In many C/C++ macros I'm seeing the code of the macro wrapped in what seems like a meaningless do while
loop. Here are examples.
#define FOO(X) do { f(X); g(X); } while (0) #define FOO(X) if (1) { f(X); g(X); } else
I can't see what the do while
is doing. Why not just write this without it?
#define FOO(X) f(X); g(X)
The speed at which macros and functions differs. Macros are typically faster than functions as they don't involve actual function call overhead.
When writing macros for functions, they saves a lot of time that is spent by the compiler for invoking / calling the functions. Hence, The advantage of a macro over an actual function, is speed. No time is taken up in passing control to a new function, because control never leaves the home function.
You may see a do loop with the conditional expression set to a constant value of zero (0). This creates a loop that will execute exactly one time. This is a coding idiom that allows a multi-line macro to be used anywhere that a single statement can be used.
Macros have the distinct advantage of being more efficient (and faster) than functions, because their corresponding code is inserted directly into your source code at the point where the macro is called. There is no overhead involved in using a macro like there is in placing a call to a function.
The do ... while
and if ... else
are there to make it so that a semicolon after your macro always means the same thing. Let's say you had something like your second macro.
#define BAR(X) f(x); g(x)
Now if you were to use BAR(X);
in an if ... else
statement, where the bodies of the if statement were not wrapped in curly brackets, you'd get a bad surprise.
if (corge) BAR(corge); else gralt();
The above code would expand into
if (corge) f(corge); g(corge); else gralt();
which is syntactically incorrect, as the else is no longer associated with the if. It doesn't help to wrap things in curly braces within the macro, because a semicolon after the braces is syntactically incorrect.
if (corge) {f(corge); g(corge);}; else gralt();
There are two ways of fixing the problem. The first is to use a comma to sequence statements within the macro without robbing it of its ability to act like an expression.
#define BAR(X) f(X), g(X)
The above version of bar BAR
expands the above code into what follows, which is syntactically correct.
if (corge) f(corge), g(corge); else gralt();
This doesn't work if instead of f(X)
you have a more complicated body of code that needs to go in its own block, say for example to declare local variables. In the most general case the solution is to use something like do ... while
to cause the macro to be a single statement that takes a semicolon without confusion.
#define BAR(X) do { \ int i = f(X); \ if (i > 4) g(i); \ } while (0)
You don't have to use do ... while
, you could cook up something with if ... else
as well, although when if ... else
expands inside of an if ... else
it leads to a "dangling else", which could make an existing dangling else problem even harder to find, as in the following code.
if (corge) if (1) { f(corge); g(corge); } else; else gralt();
The point is to use up the semicolon in contexts where a dangling semicolon is erroneous. Of course, it could (and probably should) be argued at this point that it would be better to declare BAR
as an actual function, not a macro.
In summary, the do ... while
is there to work around the shortcomings of the C preprocessor. When those C style guides tell you to lay off the C preprocessor, this is the kind of thing they're worried about.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With