Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Why should I avoid multiple inheritance in C++?

People also ask

What are the disadvantages of multiple inheritance?

The main consequence of multiple inheritance is the diamond problem: In object-oriented programming languages with multiple inheritance and knowledge organization, the diamond problem is an ambiguity that arises when two classes B and C inherit from A, and class D inherits from both B and C.

What advantage we lose by using multiple inheritance?

Correct Option: D. The benefit of dynamic binding and polymorphism is that they help making the code easier to extend but by multiple inheritance it makes harder to track.

Should you use multiple inheritance?

Multiple inheritance is useful when a subclass needs to combine multiple contracts and inherit some, or all, of the implementation of those contracts. For example, the AmericanStudent class needs to inherit from both the Student class and the American class.

Is multiple inheritance evil?

It's perceived to be evil because it's just more complex and raises more issues than people typically expect, especially where base classes are not purely abstract (no data members). Diamond inheritance can be solved using virtual inheritance, where a common base is shared.


Multiple inheritance (abbreviated as MI) smells, which means that usually, it was done for bad reasons, and it will blow back in the face of the maintainer.

Summary

  1. Consider composition of features, instead of inheritance
  2. Be wary of the Diamond of Dread
  3. Consider inheritance of multiple interfaces instead of objects
  4. Sometimes, Multiple Inheritance is the right thing. If it is, then use it.
  5. Be prepared to defend your multiple-inherited architecture in code reviews

1. Perhaps composition?

This is true for inheritance, and so, it's even more true for multiple inheritance.

Does your object really needs to inherit from another? A Car does not need to inherit from an Engine to work, nor from a Wheel. A Car has an Engine and four Wheel.

If you use multiple inheritance to resolve these problems instead of composition, then you've done something wrong.

2. The Diamond of Dread

Usually, you have a class A, then B and C both inherit from A. And (don't ask me why) someone then decides that D must inherit both from B and C.

I've encountered this kind of problem twice in 8 eights years, and it is amusing to see because of:

  1. How much of a mistake it was from the beginning (In both cases, D should not have inherited from both B and C), because this was bad architecture (in fact, C should not have existed at all...)
  2. How much maintainers were paying for that, because in C++, the parent class A was present twice in its grandchild class D, and thus, updating one parent field A::field meant either updating it twice (through B::field and C::field), or having something go silently wrong and crash, later (new a pointer in B::field, and delete C::field...)

Using the keyword virtual in C++ to qualify the inheritance avoids the double layout described above if this is not what you want, but anyway, in my experience, you're probably doing something wrong...

In Object hierarchy, you should try to keep the hierarchy as a Tree (a node has ONE parent), not as a graph.

More about the Diamond (edit 2017-05-03)

The real problem with the Diamond of Dread in C++ (assuming the design is sound - have your code reviewed!), is that you need to make a choice:

  • Is it desirable for the class A to exist twice in your layout, and what does it mean? If yes, then by all means inherit from it twice.
  • if it should exist only once, then inherit from it virtually.

This choice is inherent to the problem, and in C++, unlike other languages, you can actually do it without dogma forcing your design at language level.

But like all powers, with that power comes responsibility: Have your design reviewed.

3. Interfaces

Multiple inheritance of zero or one concrete classes, and zero or more interfaces is usually Okay, because you won't encounter the Diamond of Dread described above. In fact, this is how things are done in Java.

Usually, what you mean when C inherits from A and B is that users can use C as if it was a A, and/or as if it was a B.

In C++, an interface is an abstract class which has:

  1. all its method declared pure virtual (suffixed by = 0) (removed the 2017-05-03)
  2. no member variables

The Multiple inheritance of zero to one real object, and zero or more interfaces is not considered "smelly" (at least, not as much).

More about the C++ Abstract Interface (edit 2017-05-03)

First, the NVI pattern can be used to produce an interface, because the real criteria is to have no state (i.e. no member variables, except this). Your abstract interface's point is to publish a contract ("you can call me this way, and this way"), nothing more, nothing less. The limitation of having only abstract virtual method should be a design choice, not an obligation.

Second, in C++, it makes sense to inherit virtually from abstract interfaces, (even with the additional cost/indirection). If you don't, and the interface inheritance appears multiple time in your hierarchy, then you'll have ambiguities.

Third, object orientation is great, but it is not The Only Truth Out ThereTM in C++. Use the right tools, and always remember you have other paradigms in C++ offering different kind of solutions.

4. Do you really need Multiple Inheritance?

Sometimes, yes.

Usually, your C class is inheriting from A and B, and A and B are two unrelated objects (i.e. not in the same hierarchy, nothing in common, different concepts, etc.).

For example, you could have a system of Nodes with X,Y,Z coordinates, able to do a lot of geometric calculations (perhaps a point, part of geometric objects) and each Node is an Automated Agent, able to communicate with other agents.

Perhaps you already have access to two libraries, each with its own namespace (another reason to use namespaces... But you use namespaces, don't you?), one being geo and the other being ai

So you have your own own::Node derive both from ai::Agent and geo::Point.

This is the moment when you should ask yourself if you should not use composition instead. If own::Node is really really both a ai::Agent and a geo::Point, then composition will not do.

Then you'll need multiple inheritance, having your own::Node communicate with other agents according to their position in a 3D space.

(You'll note that ai::Agent and geo::Point are completely, totally, fully UNRELATED... This drastically reduces the danger of multiple inheritance)

Other cases (edit 2017-05-03)

There are other cases:

  • using (hopefully private) inheritance as implementation detail
  • some C++ idioms like policies could use multiple inheritance (when each part needs to communicate with the others through this)
  • the virtual inheritance from std::exception (Is Virtual Inheritance necessary for Exceptions?)
  • etc.

Sometimes you can use composition, and sometimes MI is better. The point is: You have a choice. Do it responsibly (and have your code reviewed).

5. So, should I do Multiple Inheritance?

Most of the time, in my experience, no. MI is not the right tool, even if it seems to work, because it can be used by the lazy to pile features together without realizing the consequences (like making a Car both an Engine and a Wheel).

But sometimes, yes. And at that time, nothing will work better than MI.

But because MI is smelly, be prepared to defend your architecture in code reviews (and defending it is a good thing, because if you're not able to defend it, then you should not do it).


From an interview with Bjarne Stroustrup:

People quite correctly say that you don't need multiple inheritance, because anything you can do with multiple inheritance you can also do with single inheritance. You just use the delegation trick I mentioned. Furthermore, you don't need any inheritance at all, because anything you do with single inheritance you can also do without inheritance by forwarding through a class. Actually, you don't need any classes either, because you can do it all with pointers and data structures. But why would you want to do that? When is it convenient to use the language facilities? When would you prefer a workaround? I've seen cases where multiple inheritance is useful, and I've even seen cases where quite complicated multiple inheritance is useful. Generally, I prefer to use the facilities offered by the language to doing workarounds


There's no reason to avoid it and it can be very useful in situations. You need to be aware of the potential issues though.

The biggest one being the diamond of death:

class GrandParent;
class Parent1 : public GrandParent;
class Parent2 : public GrandParent;
class Child : public Parent1, public Parent2;

You now have two "copies" of GrandParent within Child.

C++ has thought of this though and lets you do virtual inheritence to get around the issues.

class GrandParent;
class Parent1 : public virtual GrandParent;
class Parent2 : public virtual GrandParent;
class Child : public Parent1, public Parent2;

Always review your design, ensure you are not using inheritance to save on data reuse. If you can represent the same thing with composition (and typically you can) this is a far better approach.


See w:Multiple Inheritance.

Multiple inheritance has received criticism and as such, is not implemented in many languages. Criticisms includes:

  • Increased complexity
  • Semantic ambiguity often summarized as the diamond problem.
  • Not being able to explicitly inherit multiple times from a single class
  • Order of inheritance changing class semantics.

Multiple inheritance in languages with C++/Java style constructors exacerbates the inheritance problem of constructors and constructor chaining, thereby creating maintenance and extensibility problems in these languages. Objects in inheritance relationships with greatly varying construction methods are hard to implement under the constructor chaining paradigm.

Modern way of resolving this to use interface (pure abstract class) like COM and Java interface.

I can do other things in place of this?

Yes, you can. I am going to steal from GoF.

  • Program to an Interface, not an Implementation
  • Prefer composition over inheritance

Public inheritance is an IS-A relationship, and sometimes a class will be an type of several different classes, and sometimes it's important to reflect this.

"Mixins" are also sometimes useful. They are generally small classes, usually not inheriting from anything, providing useful functionality.

As long as the inheritance hierarchy is fairly shallow (as it should almost always be), and well managed, you're unlikely to get the dreaded diamond inheritance. The diamond isn't a problem with all languages that use multiple inheritance, but C++'s treatment of it is frequently awkward and sometimes puzzling.

While I've run into cases where multiple inheritance is very handy, they're actually fairly rare. This is likely because I prefer to use other design methods when I don't really need multiple inheritance. I do prefer to avoid confusing language constructs, and it's easy to construct inheritance cases where you have to read the manual really well to figure out what's going on.


You shouldn't "avoid" multiple inheritance but you should be aware of problems that can arise such as the 'diamond problem' ( http://en.wikipedia.org/wiki/Diamond_problem ) and treat the power given to you with care, as you should with all powers.