Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Stack, Static, and Heap in C++

People also ask

Is stack a static or heap?

Stack is used for static memory allocation and Heap for dynamic memory allocation, both stored in the computer's RAM . Variables allocated on the stack are stored directly to the memory and access to this memory is very fast, and it's allocation is dealt with when the program is compiled.

What is heap and stack in C?

Stack is a linear data structure whereas Heap is a hierarchical data structure. Stack memory will never become fragmented whereas Heap memory can become fragmented as blocks of memory are first allocated and then freed. Stack accesses local variables only while Heap allows you to access variables globally.

What is static and heap?

1. Static allocation allocates memory on the basis of the size of data objects. Heap allocation makes use of heap for managing the allocation of memory at run time. 2. In static allocation, there is no possibility of the creation of dynamic data structures and objects.

What is stack static?

A stack is a data structure that stores and retrieves items in a last-in-first-out (LIFO) manner. Static stack has a fixed size and is implemented as array. A stack has two primary operations: push and pop. The push operation causes a value to be stored, or pushed onto the stack.


A similar question was asked, but it didn't ask about statics.

Summary of what static, heap, and stack memory are:

  • A static variable is basically a global variable, even if you cannot access it globally. Usually there is an address for it that is in the executable itself. There is only one copy for the entire program. No matter how many times you go into a function call (or class) (and in how many threads!) the variable is referring to the same memory location.

  • The heap is a bunch of memory that can be used dynamically. If you want 4kb for an object then the dynamic allocator will look through its list of free space in the heap, pick out a 4kb chunk, and give it to you. Generally, the dynamic memory allocator (malloc, new, et c.) starts at the end of memory and works backwards.

  • Explaining how a stack grows and shrinks is a bit outside the scope of this answer, but suffice to say you always add and remove from the end only. Stacks usually start high and grow down to lower addresses. You run out of memory when the stack meets the dynamic allocator somewhere in the middle (but refer to physical versus virtual memory and fragmentation). Multiple threads will require multiple stacks (the process generally reserves a minimum size for the stack).

When you would want to use each one:

  • Statics/globals are useful for memory that you know you will always need and you know that you don't ever want to deallocate. (By the way, embedded environments may be thought of as having only static memory... the stack and heap are part of a known address space shared by a third memory type: the program code. Programs will often do dynamic allocation out of their static memory when they need things like linked lists. But regardless, the static memory itself (the buffer) is not itself "allocated", but rather other objects are allocated out of the memory held by the buffer for this purpose. You can do this in non-embedded as well, and console games will frequently eschew the built in dynamic memory mechanisms in favor of tightly controlling the allocation process by using buffers of preset sizes for all allocations.)

  • Stack variables are useful for when you know that as long as the function is in scope (on the stack somewhere), you will want the variables to remain. Stacks are nice for variables that you need for the code where they are located, but which isn't needed outside that code. They are also really nice for when you are accessing a resource, like a file, and want the resource to automatically go away when you leave that code.

  • Heap allocations (dynamically allocated memory) is useful when you want to be more flexible than the above. Frequently, a function gets called to respond to an event (the user clicks the "create box" button). The proper response may require allocating a new object (a new Box object) that should stick around long after the function is exited, so it can't be on the stack. But you don't know how many boxes you would want at the start of the program, so it can't be a static.

Garbage Collection

I've heard a lot lately about how great Garbage Collectors are, so maybe a bit of a dissenting voice would be helpful.

Garbage Collection is a wonderful mechanism for when performance is not a huge issue. I hear GCs are getting better and more sophisticated, but the fact is, you may be forced to accept a performance penalty (depending upon use case). And if you're lazy, it still may not work properly. At the best of times, Garbage Collectors realize that your memory goes away when it realizes that there are no more references to it (see reference counting). But, if you have an object that refers to itself (possibly by referring to another object which refers back), then reference counting alone will not indicate that the memory can be deleted. In this case, the GC needs to look at the entire reference soup and figure out if there are any islands that are only referred to by themselves. Offhand, I'd guess that to be an O(n^2) operation, but whatever it is, it can get bad if you are at all concerned with performance. (Edit: Martin B points out that it is O(n) for reasonably efficient algorithms. That is still O(n) too much if you are concerned with performance and can deallocate in constant time without garbage collection.)

Personally, when I hear people say that C++ doesn't have garbage collection, my mind tags that as a feature of C++, but I'm probably in the minority. Probably the hardest thing for people to learn about programming in C and C++ are pointers and how to correctly handle their dynamic memory allocations. Some other languages, like Python, would be horrible without GC, so I think it comes down to what you want out of a language. If you want dependable performance, then C++ without garbage collection is the only thing this side of Fortran that I can think of. If you want ease of use and training wheels (to save you from crashing without requiring that you learn "proper" memory management), pick something with a GC. Even if you know how to manage memory well, it will save you time which you can spend optimizing other code. There really isn't much of a performance penalty anymore, but if you really need dependable performance (and the ability to know exactly what is going on, when, under the covers) then I'd stick with C++. There is a reason that every major game engine that I've ever heard of is in C++ (if not C or assembly). Python, et al are fine for scripting, but not the main game engine.


The following is of course all not quite precise. Take it with a grain of salt when you read it :)

Well, the three things you refer to are automatic, static and dynamic storage duration, which has something to do with how long objects live and when they begin life.


Automatic storage duration

You use automatic storage duration for short lived and small data, that is needed only locally within some block:

if(some condition) {
    int a[3]; // array a has automatic storage duration
    fill_it(a);
    print_it(a);
}

The lifetime ends as soon as we exit the block, and it starts as soon as the object is defined. They are the most simple kind of storage duration, and are way faster than in particular dynamic storage duration.


Static storage duration

You use static storage duration for free variables, which might be accessed by any code all times, if their scope allows such usage (namespace scope), and for local variables that need extend their lifetime across exit of their scope (local scope), and for member variables that need to be shared by all objects of their class (classs scope). Their lifetime depends on the scope they are in. They can have namespace scope and local scope and class scope. What is true about both of them is, once their life begins, lifetime ends at the end of the program. Here are two examples:

// static storage duration. in global namespace scope
string globalA; 
int main() {
    foo();
    foo();
}

void foo() {
    // static storage duration. in local scope
    static string localA;
    localA += "ab"
    cout << localA;
}

The program prints ababab, because localA is not destroyed upon exit of its block. You can say that objects that have local scope begin lifetime when control reaches their definition. For localA, it happens when the function's body is entered. For objects in namespace scope, lifetime begins at program startup. The same is true for static objects of class scope:

class A {
    static string classScopeA;
};

string A::classScopeA;

A a, b; &a.classScopeA == &b.classScopeA == &A::classScopeA;

As you see, classScopeA is not bound to particular objects of its class, but to the class itself. The address of all three names above is the same, and all denote the same object. There are special rule about when and how static objects are initialized, but let's not concern about that now. That's meant by the term static initialization order fiasco.


Dynamic storage duration

The last storage duration is dynamic. You use it if you want to have objects live on another isle, and you want to put pointers around that reference them. You also use them if your objects are big, and if you want to create arrays of size only known at runtime. Because of this flexibility, objects having dynamic storage duration are complicated and slow to manage. Objects having that dynamic duration begin lifetime when an appropriate new operator invocation happens:

int main() {
    // the object that s points to has dynamic storage 
    // duration
    string *s = new string;
    // pass a pointer pointing to the object around. 
    // the object itself isn't touched
    foo(s);
    delete s;
}

void foo(string *s) {
    cout << s->size();
}

Its lifetime ends only when you call delete for them. If you forget that, those objects never end lifetime. And class objects that define a user declared constructor won't have their destructors called. Objects having dynamic storage duration requires manual handling of their lifetime and associated memory resource. Libraries exist to ease use of them. Explicit garbage collection for particular objects can be established by using a smart pointer:

int main() {
    shared_ptr<string> s(new string);
    foo(s);
}

void foo(shared_ptr<string> s) {
    cout << s->size();
}

You don't have to care about calling delete: The shared ptr does it for you, if the last pointer that references the object goes out of scope. The shared ptr itself has automatic storage duration. So its lifetime is automatically managed, allowing it to check whether it should delete the pointed to dynamic object in its destructor. For shared_ptr reference, see boost documents: http://www.boost.org/doc/libs/1_37_0/libs/smart_ptr/shared_ptr.htm


It's been said elaborately, just as "the short answer":

  • static variable (class)
    lifetime = program runtime (1)
    visibility = determined by access modifiers (private/protected/public)

  • static variable (global scope)
    lifetime = program runtime (1)
    visibility = the compilation unit it is instantiated in (2)

  • heap variable
    lifetime = defined by you (new to delete)
    visibility = defined by you (whatever you assign the pointer to)

  • stack variable
    visibility = from declaration until scope is exited
    lifetime = from declaration until declaring scope is exited


(1) more exactly: from initialization until deinitialization of the compilation unit (i.e. C / C++ file). Order of initialization of compilation units is not defined by the standard.

(2) Beware: if you instantiate a static variable in a header, each compilation unit gets its own copy.


I'm sure one of the pedants will come up with a better answer shortly, but the main difference is speed and size.

Stack

Dramatically faster to allocate. It is done in O(1) since it is allocated when setting up the stack frame so it is essentially free. The drawback is that if you run out of stack space you are boned. You can adjust the stack size, but IIRC you have ~2MB to play with. Also, as soon as you exit the function everything on the stack is cleared. So it can be problematic to refer to it later. (Pointers to stack allocated objects leads to bugs.)

Heap

Dramatically slower to allocate. But you have GB to play with, and point to.

Garbage Collector

The garbage collector is some code that runs in the background and frees memory. When you allocate memory on the heap it is very easy to forget to free it, which is known as a memory leak. Over time, the memory your application consumes grows and grows until it crashes. Having a garbage collector periodically free the memory you no longer need helps eliminate this class of bugs. Of course this comes at a price, as the garbage collector slows things down.


What are the problems of static and stack?

The problem with "static" allocation is that the allocation is made at compile-time: you can't use it to allocate some variable number of data, the number of which isn't known until run-time.

The problem with allocating on the "stack" is that the allocation is destroyed as soon as the subroutine which does the allocation returns.

I could write an entire application without allocate variables in the heap?

Perhaps but not a non-trivial, normal, big application (but so-called "embedded" programs might be written without the heap, using a subset of C++).

What garbage collector does ?

It keeps watching your data ("mark and sweep") to detect when your application is no longer referencing it. This is convenient for the application, because the application doesn't need to deallocate the data ... but the garbage collector might be computationally expensive.

Garbage collectors aren't a usual feature of C++ programming.

What could you do manipulating the memory by yourself that you couldn't do using this garbage collector?

Learn the C++ mechanisms for deterministic memory deallocation:

  • 'static': never deallocated
  • 'stack': as soon as the variable "goes out of scope"
  • 'heap': when the pointer is deleted (explicitly deleted by the application, or implicitly deleted within some-or-other subroutine)