Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

When is std::weak_ptr useful?

People also ask

When should I use weak_ptr?

By using a weak_ptr , you can create a shared_ptr that joins to an existing set of related instances, but only if the underlying memory resource is still valid. A weak_ptr itself does not participate in the reference counting, and therefore, it cannot prevent the reference count from going to zero.

What is std :: weak_ptr?

std::weak_ptr is a smart pointer that holds a non-owning ("weak") reference to an object that is managed by std::shared_ptr. It must be converted to std::shared_ptr in order to access the referenced object.

What is the difference between shared_ptr and weak_ptr?

The only difference between weak_ptr and shared_ptr is that the weak_ptr allows the reference counter object to be kept after the actual object was freed. As a result, if you keep a lot of shared_ptr in a std::set the actual objects will occupy a lot of memory if they are big enough.

When should I use shared_ptr?

Use shared_ptr if you want to share ownership of a resource. Many shared_ptr can point to a single resource. shared_ptr maintains reference count for this propose. when all shared_ptr's pointing to resource goes out of scope the resource is destroyed.


std::weak_ptr is a very good way to solve the dangling pointer problem. By just using raw pointers it is impossible to know if the referenced data has been deallocated or not. Instead, by letting a std::shared_ptr manage the data, and supplying std::weak_ptr to users of the data, the users can check validity of the data by calling expired() or lock().

You could not do this with std::shared_ptr alone, because all std::shared_ptr instances share the ownership of the data which is not removed before all instances of std::shared_ptr are removed. Here is an example of how to check for dangling pointer using lock():

#include <iostream>
#include <memory>

int main()
{
    // OLD, problem with dangling pointer
    // PROBLEM: ref will point to undefined data!

    int* ptr = new int(10);
    int* ref = ptr;
    delete ptr;

    // NEW
    // SOLUTION: check expired() or lock() to determine if pointer is valid

    // empty definition
    std::shared_ptr<int> sptr;

    // takes ownership of pointer
    sptr.reset(new int);
    *sptr = 10;

    // get pointer to data without taking ownership
    std::weak_ptr<int> weak1 = sptr;

    // deletes managed object, acquires new pointer
    sptr.reset(new int);
    *sptr = 5;

    // get pointer to new data without taking ownership
    std::weak_ptr<int> weak2 = sptr;

    // weak1 is expired!
    if(auto tmp = weak1.lock())
        std::cout << *tmp << '\n';
    else
        std::cout << "weak1 is expired\n";
    
    // weak2 points to new data (5)
    if(auto tmp = weak2.lock())
        std::cout << *tmp << '\n';
    else
        std::cout << "weak2 is expired\n";
}

Output

weak1 is expired
5

A good example would be a cache.

For recently accessed objects, you want to keep them in memory, so you hold a strong pointer to them. Periodically, you scan the cache and decide which objects have not been accessed recently. You don't need to keep those in memory, so you get rid of the strong pointer.

But what if that object is in use and some other code holds a strong pointer to it? If the cache gets rid of its only pointer to the object, it can never find it again. So the cache keeps a weak pointer to objects that it needs to find if they happen to stay in memory.

This is exactly what a weak pointer does -- it allows you to locate an object if it's still around, but doesn't keep it around if nothing else needs it.


Another answer, hopefully simpler. (for fellow googlers)

Suppose you have Team and Member objects.

Obviously it's a relationship : the Team object will have pointers to its Members. And it's likely that the members will also have a back pointer to their Team object.

Then you have a dependency cycle. If you use shared_ptr, objects will no longer be automatically freed when you abandon reference on them, because they reference each other in a cyclic way. This is a memory leak.

You break this by using weak_ptr. The "owner" typically use shared_ptr and the "owned" use a weak_ptr to its parent, and convert it temporarily to shared_ptr when it needs access to its parent.

Store a weak ptr :

weak_ptr<Parent> parentWeakPtr_ = parentSharedPtr; // automatic conversion to weak from shared

then use it when needed

shared_ptr<Parent> tempParentSharedPtr = parentWeakPtr_.lock(); // on the stack, from the weak ptr
if( !tempParentSharedPtr ) {
  // yes, it may fail if the parent was freed since we stored weak_ptr
} else {
  // do stuff
}
// tempParentSharedPtr is released when it goes out of scope

Here's one example, given to me by @jleahy: Suppose you have a collection of tasks, executed asynchronously, and managed by an std::shared_ptr<Task>. You may want to do something with those tasks periodically, so a timer event may traverse a std::vector<std::weak_ptr<Task>> and give the tasks something to do. However, simultaneously a task may have concurrently decided that it is no longer needed and die. The timer can thus check whether the task is still alive by making a shared pointer from the weak pointer and using that shared pointer, provided it isn't null.


They are useful with Boost.Asio when you are not guaranteed that a target object still exists when an asynchronous handler is invoked. The trick is to bind a weak_ptr into the asynchonous handler object, using std::bind or lambda captures.

void MyClass::startTimer()
{
    std::weak_ptr<MyClass> weak = shared_from_this();
    timer_.async_wait( [weak](const boost::system::error_code& ec)
    {
        auto self = weak.lock();
        if (self)
        {
            self->handleTimeout();
        }
        else
        {
            std::cout << "Target object no longer exists!\n";
        }
    } );
}

This is a variant of the self = shared_from_this() idiom often seen in Boost.Asio examples, where a pending asynchronous handler will not prolong the lifetime of the target object, yet is still safe if the target object is deleted.


weak_ptr is also good to check the correct deletion of an object - especially in unit tests. Typical use case might look like this:

std::weak_ptr<X> weak_x{ shared_x };
shared_x.reset();
BOOST_CHECK(weak_x.lock());
... //do something that should remove all other copies of shared_x and hence destroy x
BOOST_CHECK(!weak_x.lock());

shared_ptr : holds the real object.

weak_ptr : uses lock to connect to the real owner or returns a NULL shared_ptr otherwise.

weak ptr

Roughly speaking, weak_ptr role is similar to the role of housing agency. Without agents, to get a house on rent we may have to check random houses in the city. The agents make sure that we visit only those houses which are still accessible and available for rent.