Let's say I have a time series dataframe with a categorical variable and a value:
In [4]: df = pd.DataFrame(data={'category': np.random.choice(['A', 'B', 'C', 'D'], 11), 'value': np.random.rand(11)}, index=pd.date_range('2015-04-20','2015-04-30'))
In [5]: df
Out[5]:
category value
2015-04-20 D 0.220804
2015-04-21 A 0.992445
2015-04-22 A 0.743648
2015-04-23 B 0.337535
2015-04-24 B 0.747340
2015-04-25 B 0.839823
2015-04-26 D 0.292628
2015-04-27 D 0.906340
2015-04-28 B 0.244044
2015-04-29 A 0.070764
2015-04-30 D 0.132221
If I'm interested in rows with category A, filtering to isolate them is trivial. But what if I'm interested in the n rows before category A's as well? If n=2, I'd like to see something like:
In [5]: df[some boolean indexing]
Out[5]:
category value
2015-04-20 D 0.220804
2015-04-21 A 0.992445
2015-04-22 A 0.743648
2015-04-27 D 0.906340
2015-04-28 B 0.244044
2015-04-29 A 0.070764
Similarly, what if I'm interested in the n rows around category A's? Again if n=2, I'd like to see this:
In [5]: df[some other boolean indexing]
Out[5]:
category value
2015-04-20 D 0.220804
2015-04-21 A 0.992445
2015-04-22 A 0.743648
2015-04-23 B 0.337535
2015-04-24 B 0.747340
2015-04-27 D 0.906340
2015-04-28 B 0.244044
2015-04-29 A 0.070764
2015-04-30 D 0.132221
Thanks!
n
rows around category A's:
In [223]: idx = df.index.get_indexer_for(df[df.category=='A'].index)
In [224]: n = 1
In [225]: df.iloc[np.unique(np.concatenate([np.arange(max(i-n,0), min(i+n+1, len(df)))
for i in idx]))]
Out[225]:
category value
2015-04-20 D 0.220804
2015-04-21 A 0.992445
2015-04-22 A 0.743648
2015-04-23 B 0.337535
2015-04-28 B 0.244044
2015-04-29 A 0.070764
2015-04-30 D 0.132221
In [226]: n = 2
In [227]: df.iloc[np.unique(np.concatenate([np.arange(max(i-n,0), min(i+n+1, len(df)))
for i in idx]))]
Out[227]:
category value
2015-04-20 D 0.220804
2015-04-21 A 0.992445
2015-04-22 A 0.743648
2015-04-23 B 0.337535
2015-04-24 B 0.747340
2015-04-27 D 0.906340
2015-04-28 B 0.244044
2015-04-29 A 0.070764
2015-04-30 D 0.132221
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With