Let's say that we have two samples data1
and data2
with their respective weights weight1
and weight2
and that we want to calculate the Kolmogorov-Smirnov statistic between the two weighted samples.
The way we do that in python follows:
import numpy as np
def ks_w(data1,data2,wei1,wei2):
ix1=np.argsort(data1)
ix2=np.argsort(data2)
wei1=wei1[ix1]
wei2=wei2[ix2]
data1=data1[ix1]
data2=data2[ix2]
d=0.
fn1=0.
fn2=0.
j1=0
j2=0
j1w=0.
j2w=0.
while(j1<len(data1))&(j2<len(data2)):
d1=data1[j1]
d2=data2[j2]
w1=wei1[j1]
w2=wei2[j2]
if d1<=d2:
j1+=1
j1w+=w1
fn1=(j1w)/sum(wei1)
if d2<=d1:
j2+=1
j2w+=w2
fn2=(j2w)/sum(wei2)
if abs(fn2-fn1)>d:
d=abs(fn2-fn1)
return d
where we just modify to our purpose the classical two-sample KS statistic as implemented in Press, Flannery, Teukolsky, Vetterling - Numerical Recipes in C - Cambridge University Press - 1992 - pag.626.
Our questions are:
This solution is based on the code for scipy.stats.ks_2samp
and runs in about 1/10000 the time (notebook):
import numpy as np
def ks_w2(data1, data2, wei1, wei2):
ix1 = np.argsort(data1)
ix2 = np.argsort(data2)
data1 = data1[ix1]
data2 = data2[ix2]
wei1 = wei1[ix1]
wei2 = wei2[ix2]
data = np.concatenate([data1, data2])
cwei1 = np.hstack([0, np.cumsum(wei1)/sum(wei1)])
cwei2 = np.hstack([0, np.cumsum(wei2)/sum(wei2)])
cdf1we = cwei1[[np.searchsorted(data1, data, side='right')]]
cdf2we = cwei2[[np.searchsorted(data2, data, side='right')]]
return np.max(np.abs(cdf1we - cdf2we))
Here's a test of its accuracy and performance:
ds1 = np.random.rand(10000)
ds2 = np.random.randn(40000) + .2
we1 = np.random.rand(10000) + 1.
we2 = np.random.rand(40000) + 1.
ks_w2(ds1, ds2, we1, we2)
# 0.4210415232236593
ks_w(ds1, ds2, we1, we2)
# 0.4210415232236593
%timeit ks_w2(ds1, ds2, we1, we2)
# 100 loops, best of 3: 17.1 ms per loop
%timeit ks_w(ds1, ds2, we1, we2)
# 1 loop, best of 3: 3min 44s per loop
This is a R version of a two-tails weighted KS statistic following the suggestion of Numerical Methods of Statistics by Monohan, pg. 334 in 1E and pg. 358 in 2E.
ks_weighted <- function(vector_1,vector_2,weights_1,weights_2){
F_vec_1 <- ewcdf(vector_1, weights = weights_1, normalise=FALSE)
F_vec_2 <- ewcdf(vector_2, weights = weights_2, normalise=FALSE)
xw <- c(vector_1,vector_2)
d <- max(abs(F_vec_1(xw) - F_vec_2(xw)))
## P-VALUE with NORMAL SAMPLE
# n_vector_1 <- length(vector_1)
# n_vector_2<- length(vector_2)
# n <- n_vector_1 * n_vector_2/(n_vector_1 + n_vector_2)
# P-VALUE EFFECTIVE SAMPLE SIZE as suggested by Monahan
n_vector_1 <- sum(weights_1)^2/sum(weights_1^2)
n_vector_2 <- sum(weights_2)^2/sum(weights_2^2)
n <- n_vector_1 * n_vector_2/(n_vector_1 + n_vector_2)
pkstwo <- function(x, tol = 1e-06) {
if (is.numeric(x))
x <- as.double(x)
else stop("argument 'x' must be numeric")
p <- rep(0, length(x))
p[is.na(x)] <- NA
IND <- which(!is.na(x) & (x > 0))
if (length(IND))
p[IND] <- .Call(stats:::C_pKS2, p = x[IND], tol)
p
}
pval <- 1 - pkstwo(sqrt(n) * d)
out <- c(KS_Stat=d, P_value=pval)
return(out)
}
To add to Luca Jokull's answer, if you want to also return a p-value (similar to the unweighted scipy.stats.ks_2samp
function), the suggested ks_w2()
function can be modified as follows:
from scipy.stats import distributions
def ks_weighted(data1, data2, wei1, wei2, alternative='two-sided'):
ix1 = np.argsort(data1)
ix2 = np.argsort(data2)
data1 = data1[ix1]
data2 = data2[ix2]
wei1 = wei1[ix1]
wei2 = wei2[ix2]
data = np.concatenate([data1, data2])
cwei1 = np.hstack([0, np.cumsum(wei1)/sum(wei1)])
cwei2 = np.hstack([0, np.cumsum(wei2)/sum(wei2)])
cdf1we = cwei1[np.searchsorted(data1, data, side='right')]
cdf2we = cwei2[np.searchsorted(data2, data, side='right')]
d = np.max(np.abs(cdf1we - cdf2we))
# calculate p-value
n1 = data1.shape[0]
n2 = data2.shape[0]
m, n = sorted([float(n1), float(n2)], reverse=True)
en = m * n / (m + n)
if alternative == 'two-sided':
prob = distributions.kstwo.sf(d, np.round(en))
else:
z = np.sqrt(en) * d
# Use Hodges' suggested approximation Eqn 5.3
# Requires m to be the larger of (n1, n2)
expt = -2 * z**2 - 2 * z * (m + 2*n)/np.sqrt(m*n*(m+n))/3.0
prob = np.exp(expt)
return d, prob
This is the asymptotic method that scipy's original unweighted function uses.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With