Give the following df
Id other concat
0 A z 1
1 A y 2
2 B x 3
3 B w 4
4 B v 5
5 B u 6
I want the result with new
column with grouped values as list
Id other concat new
0 A z 1 [1, 2]
1 A y 2 [1, 2]
2 B x 3 [3, 4, 5, 6]
3 B w 4 [3, 4, 5, 6]
4 B v 5 [3, 4, 5, 6]
5 B u 6 [3, 4, 5, 6]
This is similar to these questions:
grouping rows in list in pandas groupby
Replicating GROUP_CONCAT for pandas.DataFrame
However, it is apply the grouping you get from df.groupby('Id')['concat'].apply(list)
, which is a Series
of smaller size than the dataframe, to the original dataframe.
I have tried the code below, but it does not apply this to the dataframe:
import pandas as pd
df = pd.DataFrame( {'Id':['A','A','B','B','B','C'], 'other':['z','y','x','w','v','u'], 'concat':[1,2,5,5,4,6]})
df.groupby('Id')['concat'].apply(list)
I know that transform
can be used to apply groupings to dataframes, but it does not work in this case.
>>> df['new_col'] = df.groupby('Id')['concat'].transform(list)
>>> df
Id concat other new_col
0 A 1 z 1
1 A 2 y 2
2 B 5 x 5
3 B 5 w 5
4 B 4 v 4
5 C 6 u 6
>>> df['new_col'] = df.groupby('Id')['concat'].apply(list)
>>> df
Id concat other new_col
0 A 1 z NaN
1 A 2 y NaN
2 B 5 x NaN
3 B 5 w NaN
4 B 4 v NaN
5 C 6 u NaN
To create a new column for the output of groupby. sum(), we will first apply the groupby. sim() operation and then we will store this result in a new column.
Using apply() method If you need to apply a method over an existing column in order to compute some values that will eventually be added as a new column in the existing DataFrame, then pandas. DataFrame. apply() method should do the trick.
groupby
with join
df.join(df.groupby('Id').concat.apply(list).to_frame('new'), on='Id')
Less elegant (and slower..) solution, but let it be here just as an alternative.
def func(gr):
gr['new'] = [list(gr.concat)] * len(gr.index)
return gr
df.groupby('Id').apply(func)
%timeit df.groupby('Id').apply(func)
100 loops, best of 3: 4.18 ms per loop
%timeit df.join(df.groupby('Id').concat.apply(list).to_frame('new'), on='Id')
1000 loops, best of 3: 1.69 ms per loop
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With