I'm trying to use group by to create a new dataframe, but I need the multi index to be consistent. Regardless of whether the sub category exists, I'd like it to be created like the following:
import pandas as pd
df = pd.DataFrame(
{'Cat 1':['A','A','A','B','B','B','B','C','C','C','C','C','D'],
'Cat 2':['A','B','A','B','B','B','A','B','B','B','B','B','A'],
'Num': [1,1,1,1,1,1,1,1,1,1,1,1,1]})
print df.groupby(['Cat 1','Cat 2']).sum()
With output that looks like:
Num
Cat 1 Cat 2
A A 2
B 1
B A 1
B 3
C B 5
D A 1
But I'd like it to look like
Num
Cat 1 Cat 2
A A 2
B 1
B A 1
B 3
C A Nan
B 5
D A 1
B Nan
I read different data that then adds a column in this format so the resulting array would look something like:
Num Num_added_later
Cat 1 Cat 2
A A 2 12
B 1 5
B A 1 5
B 3 3
C A Nan 5
B 5 5
D A 1 1
B Nan 3
You can create a new index based on the two Cat columns and reindex your results:
import pandas as pd
new_index = pd.MultiIndex.from_product([df["Cat 1"].unique(), df["Cat 2"].unique()], names = ["Cat 1", "Cat 2"])
df.groupby(['Cat 1','Cat 2']).sum().reindex(new_index)
This is a hack1! Please use @Psidom's answer
df.groupby(['Cat 1','Cat 2']).sum().unstack().stack(dropna=False)
Num
Cat 1 Cat 2
A A 2.0
B 1.0
B A 1.0
B 3.0
C A NaN
B 5.0
D A 1.0
B NaN
Ok, maybe less a hack but...
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With