There are many questions about rolling regression in R, but here I am specifically looking for something that uses dplyr
, broom
and (if needed) purrr
.
This is what makes this question different. I want to be tidyverse
consistent. Is is possible to do a proper running regression with tidy tools such as purrr:map
and dplyr
?
Please consider this simple example:
library(dplyr)
library(purrr)
library(broom)
library(zoo)
library(lubridate)
mydata = data_frame('group' = c('a','a', 'a','a','b', 'b', 'b', 'b'),
'y' = c(1,2,3,4,2,3,4,5),
'x' = c(2,4,6,8,6,9,12,15),
'date' = c(ymd('2016-06-01', '2016-06-02', '2016-06-03', '2016-06-04',
'2016-06-03', '2016-06-04', '2016-06-05','2016-06-06')))
group y x date
<chr> <dbl> <dbl> <date>
1 a 1.00 2.00 2016-06-01
2 a 2.00 4.00 2016-06-02
3 a 3.00 6.00 2016-06-03
4 a 4.00 8.00 2016-06-04
5 b 2.00 6.00 2016-06-03
6 b 3.00 9.00 2016-06-04
7 b 4.00 12.0 2016-06-05
8 b 5.00 15.0 2016-06-06
For each group (in this example, a
or b
):
y
on x
over the last 2 observations.Of course, as you can see, the rolling regression can only be computed for the last 2 rows in each group.
I have tried to use the following, but without success.
data %>% group_by(group) %>%
mutate(rolling_coef = do(tidy(rollapply(. ,
width=2,
FUN = function(df) {t = lm(formula=y ~ x,
data = as.data.frame(df),
na.rm=TRUE);
return(t$coef) },
by.column=FALSE, align="right"))))
Error in mutate_impl(.data, dots) :
Evaluation error: subscript out of bounds.
In addition: There were 21 warnings (use warnings() to see them)
Any ideas?
Expected output for the last two rows of the first a
group is 0.5 and 0.5 (there is indeed a perfect linear correlation between y
and x
in this example)
More specifically:
mydata_1 <- mydata %>% filter(group == 'a',
row_number() %in% c(1,2))
# A tibble: 2 x 3
group y x
<chr> <dbl> <dbl>
1 a 1.00 2.00
2 a 2.00 4.00
> tidy(lm(y ~ x, mydata_1))['estimate'][2,]
[1] 0.5
and also
mydata_2 <- mydata %>% filter(group == 'a',
row_number() %in% c(2,3))
# A tibble: 2 x 3
group y x
<chr> <dbl> <dbl>
1 a 2.00 4.00
2 a 3.00 6.00
> tidy(lm(y ~ x, mydata_2))['estimate'][2,]
[1] 0.5
EDIT:
interesting follow-up to this question here rolling regression with confidence interval (tidyverse)
Define a function Coef
whose argument is formed from cbind(y, x)
and which regresses y on x with an intercept, returning the coefficients. Then apply rollapplyr
using the current and prior rows over each group. If by last you meant the 2 prior rows to the current row, i.e. exclude the current row, then replace 2 with list(-seq(2))
as an argument to rollapplyr
.
Coef <- . %>% as.data.frame %>% lm %>% coef
mydata %>%
group_by(group) %>%
do(cbind(reg_col = select(., y, x) %>% rollapplyr(2, Coef, by.column = FALSE, fill = NA),
date_col = select(., date))) %>%
ungroup
giving:
# A tibble: 8 x 4
group `reg_col.(Intercept)` reg_col.x date
<chr> <dbl> <dbl> <date>
1 a NA NA 2016-06-01
2 a 0 0.500 2016-06-02
3 a 0 0.500 2016-06-03
4 a 0 0.500 2016-06-04
5 b NA NA 2016-06-03
6 b 0.00000000000000126 0.333 2016-06-04
7 b - 0.00000000000000251 0.333 2016-06-05
8 b 0 0.333 2016-06-06
A variation of the above would be:
mydata %>%
group_by(group) %>%
do(select(., date, y, x) %>%
read.zoo %>%
rollapplyr(2, Coef, by.column = FALSE, fill = NA) %>%
fortify.zoo(names = "date")
) %>%
ungroup
If only the slope is needed there are further simplifications possible. We use the fact that the slope equals cov(x, y) / var(x)
.
slope <- . %>% { cov(.[, 2], .[, 1]) / var(.[, 2])}
mydata %>%
group_by(group) %>%
mutate(slope = rollapplyr(cbind(y, x), 2, slope, by.column = FALSE, fill = NA)) %>%
ungroup
This is more of an idea than an answer but maybe instead of using group_by
try using map
and your list of groups:
FUN <- function(g, df = NULL) {
tmp <- tidy(rollapply(
zoo(filter(df, group == g)),
width = 2,
FUN = function(z) {
t <- lm(y ~ x, data = as.data.frame(z)) ; return(t$coef)
},
by.column = FALSE,
align = "right"
))
tmp$series <- c(rep('intercept', nrow(tmp) / 2), rep('slope', nrow(tmp) / 2))
spread(tmp, series, value) %>% mutate(group = g)
}
map_dfr(list('a', 'b'), FUN, df = data)
Does this do what you're after?
data %>%
group_by(group) %>%
do(data.frame(., rolling_coef = c(NA, rollapply(data = ., width = 2, FUN = function(df_) {
d = data.frame(df_)
d[, 2:3] <- apply(d[,2:3], MARGIN = 2, FUN = as.numeric)
mod = lm(y ~ x, data = d)
return(coef(mod)[2])
}, by.column = FALSE, align = "right"))))
Giving:
# A tibble: 8 x 4
# Groups: group [2]
group y x rolling_coef
<chr> <dbl> <dbl> <dbl>
1 a 1. 2. NA
2 a 2. 4. 0.500
3 a 3. 6. 0.500
4 a 4. 8. 0.500
5 b 2. 6. NA
6 b 3. 9. 0.333
7 b 4. 12. 0.333
8 b 5. 15. 0.333
Edit: Slightly modified code, but data_frame
will not accept the .
group placeholder as an argument- not sure how to fix that.
data %>%
group_by(group) %>%
do(data.frame(., rolling_coef = c(NA, rollapplyr(data = ., width = 2, FUN = function(df_) {
mod = lm(y ~ x, data = .)
return(coef(mod)[2])
}, by.column = FALSE))))
Edit 2: Using fill = NA
rather than using c(NA, ...)
achieves the same result.
data %>%
group_by(group) %>%
do(data.frame(., rolling_coef = rollapplyr(data = ., width = 2, FUN = function(df_) {
mod = lm(y ~ x, data = .)
return(coef(mod)[2])
}, by.column = FALSE, fill = NA)))
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With