I am trying to show filters on a camera feed by using a Metal view: MTKView
. I am closely following the method of Apple's sample code - Enhancing Live Video by Leveraging TrueDepth Camera Data (link).
Following code works great (mainly interpreted from above-mentioned sample code) :
class MetalObject: NSObject, MTKViewDelegate {
private var metalBufferView : MTKView?
private var metalDevice = MTLCreateSystemDefaultDevice()
private var metalCommandQueue : MTLCommandQueue!
private var ciContext : CIContext!
private let colorSpace = CGColorSpaceCreateDeviceRGB()
private var videoPixelBuffer : CVPixelBuffer?
private let syncQueue = DispatchQueue(label: "Preview View Sync Queue", qos: .userInitiated, attributes: [], autoreleaseFrequency: .workItem)
private var textureWidth : Int = 0
private var textureHeight : Int = 0
private var textureMirroring = false
private var sampler : MTLSamplerState!
private var renderPipelineState : MTLRenderPipelineState!
private var vertexCoordBuffer : MTLBuffer!
private var textCoordBuffer : MTLBuffer!
private var internalBounds : CGRect!
private var textureTranform : CGAffineTransform?
private var previewImage : CIImage?
init(with frame: CGRect) {
super.init()
self.metalBufferView = MTKView(frame: frame, device: self.metalDevice)
self.metalBufferView!.contentScaleFactor = UIScreen.main.nativeScale
self.metalBufferView!.framebufferOnly = true
self.metalBufferView!.colorPixelFormat = .bgra8Unorm
self.metalBufferView!.isPaused = true
self.metalBufferView!.enableSetNeedsDisplay = false
self.metalBufferView!.delegate = self
self.metalCommandQueue = self.metalDevice!.makeCommandQueue()
self.ciContext = CIContext(mtlDevice: self.metalDevice!)
//Configure Metal
let defaultLibrary = self.metalDevice!.makeDefaultLibrary()!
let pipelineDescriptor = MTLRenderPipelineDescriptor()
pipelineDescriptor.colorAttachments[0].pixelFormat = .bgra8Unorm
pipelineDescriptor.vertexFunction = defaultLibrary.makeFunction(name: "vertexPassThrough")
pipelineDescriptor.fragmentFunction = defaultLibrary.makeFunction(name: "fragmentPassThrough")
// To determine how our textures are sampled, we create a sampler descriptor, which
// will be used to ask for a sampler state object from our device below.
let samplerDescriptor = MTLSamplerDescriptor()
samplerDescriptor.sAddressMode = .clampToEdge
samplerDescriptor.tAddressMode = .clampToEdge
samplerDescriptor.minFilter = .linear
samplerDescriptor.magFilter = .linear
sampler = self.metalDevice!.makeSamplerState(descriptor: samplerDescriptor)
do {
renderPipelineState = try self.metalDevice!.makeRenderPipelineState(descriptor: pipelineDescriptor)
} catch {
fatalError("Unable to create preview Metal view pipeline state. (\(error))")
}
}
final func update (newVideoPixelBuffer: CVPixelBuffer?) {
self.syncQueue.async {
var filteredImage : CIImage
self.videoPixelBuffer = newVideoPixelBuffer
//---------
//Core image filters
//Strictly CIFilters, chained together
//---------
self.previewImage = filteredImage
//Ask Metal View to draw
self.metalBufferView?.draw()
}
}
//MARK: - Metal View Delegate
final func draw(in view: MTKView) {
print (Thread.current)
guard let drawable = self.metalBufferView!.currentDrawable,
let currentRenderPassDescriptor = self.metalBufferView!.currentRenderPassDescriptor,
let previewImage = self.previewImage else {
return
}
// create a texture for the CI image to render to
let textureDescriptor = MTLTextureDescriptor.texture2DDescriptor(
pixelFormat: .bgra8Unorm,
width: Int(previewImage.extent.width),
height: Int(previewImage.extent.height),
mipmapped: false)
textureDescriptor.usage = [.shaderWrite, .shaderRead]
let texture = self.metalDevice!.makeTexture(descriptor: textureDescriptor)!
if texture.width != textureWidth ||
texture.height != textureHeight ||
self.metalBufferView!.bounds != internalBounds {
setupTransform(width: texture.width, height: texture.height, mirroring: mirroring, rotation: rotation)
}
// Set up command buffer and encoder
guard let commandQueue = self.metalCommandQueue else {
print("Failed to create Metal command queue")
return
}
guard let commandBuffer = commandQueue.makeCommandBuffer() else {
print("Failed to create Metal command buffer")
return
}
// add rendering of the image to the command buffer
ciContext.render(previewImage,
to: texture,
commandBuffer: commandBuffer,
bounds: previewImage.extent,
colorSpace: self.colorSpace)
guard let commandEncoder = commandBuffer.makeRenderCommandEncoder(descriptor: currentRenderPassDescriptor) else {
print("Failed to create Metal command encoder")
return
}
// add vertex and fragment shaders to the command buffer
commandEncoder.label = "Preview display"
commandEncoder.setRenderPipelineState(renderPipelineState!)
commandEncoder.setVertexBuffer(vertexCoordBuffer, offset: 0, index: 0)
commandEncoder.setVertexBuffer(textCoordBuffer, offset: 0, index: 1)
commandEncoder.setFragmentTexture(texture, index: 0)
commandEncoder.setFragmentSamplerState(sampler, index: 0)
commandEncoder.drawPrimitives(type: .triangleStrip, vertexStart: 0, vertexCount: 4)
commandEncoder.endEncoding()
commandBuffer.present(drawable) // Draw to the screen
commandBuffer.commit()
}
final func mtkView(_ view: MTKView, drawableSizeWillChange size: CGSize) {
}
}
Notes
MTKViewDelegate
is used instead of subclassing MTKView
is that when it was subclassed, the draw call was called on the main thread. With the delegate method shown above, it seems to be a different metal related thread call each loop. Above method seem to give much better performance.CIFilter
usage on update method above had to be redacted. All it is a heavy chain of CIFilters
stacked. Unfortunately there is no room for any tweaks with these filters.Above code seems to slow down the main thread a lot, causing rest of the app UI to be choppy. For example, scrolling a UIScrollview
gets seem to be slow and choppy.
Tweak Metal view to ease up on CPU and go easy on the main thread to leave enough juice for rest of the UI.
According to the above graphics, preparation of command buffer is all done in CPU until presented and committed(?). Is there a way to offload that from CPU?
Any hints, feedback, tips, etc to improve the drawing efficiency would be appreciated.
A specialized view that creates, configures, and displays Metal objects. The MTKView class provides a default implementation of a Metal-aware view that you can use to render graphics using Metal and display them onscreen. When asked, the view provides a MTLRenderPassDescriptor object that points at a texture for you to render new contents into.
The MTKView class supports three drawing modes: Timed updates: The view redraws its contents based on an internal timer. In this case, which is the default behavior, both isPaused and enableSetNeedsDisplay are set to false.
The view requires a MTLDevice object to manage the Metal objects it creates for you. You must set the device property and, optionally, modify the view’s drawable properties before drawing. The MTKView class supports three drawing modes: Timed updates: The view redraws its contents based on an internal timer.
MTKView - Draw on to Two Views at Once 0 MTKView Transparency 0 Using metal to snapshot SCNRenderer produces darker output image Hot Network Questions y-axis distance from 0 to 1 is smaller than the distance from 1 to 2 or from 2 to 3
There are a few things you can do to improve the performance:
CIRenderDestination
API to defer the actual texture retrieval to the moment the view is actually rendered to (i.e. when Core Image is done).Here’s the draw(in view: MTKView)
I’m using in my Core Image project, modified for your case:
public func draw(in view: MTKView) {
if let currentDrawable = view.currentDrawable,
let commandBuffer = self.commandQueue.makeCommandBuffer() {
let drawableSize = view.drawableSize
// optional: scale the image to fit the view
let scaleX = drawableSize.width / image.extent.width
let scaleY = drawableSize.height / image.extent.height
let scale = min(scaleX, scaleY)
let scaledImage = previewImage.transformed(by: CGAffineTransform(scaleX: scale, y: scale))
// optional: center in the view
let originX = max(drawableSize.width - scaledImage.extent.size.width, 0) / 2
let originY = max(drawableSize.height - scaledImage.extent.size.height, 0) / 2
let centeredImage = scaledImage.transformed(by: CGAffineTransform(translationX: originX, y: originY))
// create a render destination that allows to lazily fetch the target texture
// which allows the encoder to process all CI commands _before_ the texture is actually available;
// this gives a nice speed boost because the CPU doesn’t need to wait for the GPU to finish
// before starting to encode the next frame
let destination = CIRenderDestination(width: Int(drawableSize.width),
height: Int(drawableSize.height),
pixelFormat: view.colorPixelFormat,
commandBuffer: commandBuffer,
mtlTextureProvider: { () -> MTLTexture in
return currentDrawable.texture
})
let task = try! self.context.startTask(toRender: centeredImage, to: destination)
// bonus: you can Quick Look the task to see what’s actually scheduled for the GPU
commandBuffer.present(currentDrawable)
commandBuffer.commit()
// optional: you can wait for the task execution and Quick Look the info object to get insights and metrics
DispatchQueue.global(qos: .background).async {
let info = try! task.waitUntilCompleted()
}
}
}
If this is still too slow, you can try setting the priorityRequestLow
CIContextOption
when creating your CIContext
to tell Core Image to render in low priority.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With