I've been confused recently by a few code examples -- sometimes it seems that inheriting typedefs exposed by a base class works, and sometimes it seems that it doesn't.
My questions are
Here's some specific code:
// First example: Inheriting `static const int ...`
// Basic TypeList object
template<typename... Ts>
struct TypeList {
static const int size = sizeof...(Ts);
};
// Repeat metafunction
template<typename T>
struct repeat;
template<typename... Ts>
struct repeat<TypeList<Ts...>> : TypeList<Ts..., Ts...> {};
// Checks
typedef TypeList<int, float, char> MyList;
static_assert(MyList::size == 3, "D:");
static_assert(repeat<MyList>::size == 6, "D:");
// Second example: Inheriting typedefs
// Meta function to compute a bundle of types
template <typename T>
struct FuncPtrTypes {
typedef int result_type;
typedef T input_type;
typedef result_type(*func_ptr_type)(input_type);
};
// template <typename T, typename FuncPtrTypes<T>::func_ptr_type me>
// struct FuncPtr : FuncPtrTypes<T> {
// static result_type apply(input_type i) {
// return me(i);
// }
// };
//
// Doesn't compile (?): clang 3.6:
// main.cpp:34:9: error: unknown type name 'result_type'
// static result_type apply(input_type i) {
// ^
// main.cpp:34:27: error: unknown type name 'input_type'
// static result_type apply(input_type i) {
// ^
//
// g++ 4.8.4:
// main.cpp:34:9: error: ‘result_type’ does not name a type
// static result_type apply(input_type i) {
// ^
// main.cpp:34:9: note: (perhaps ‘typename FuncPtrTypes<T>::result_type’ was intended)
// This compiles but is clumsy:
template <typename T, typename FuncPtrTypes<T>::func_ptr_type me>
struct FuncPtr {
typedef typename FuncPtrTypes<T>::input_type input_type;
typedef typename FuncPtrTypes<T>::result_type result_type;
static result_type apply(input_type i) {
return me(i);
}
};
// A non-template example:
struct foo {
typedef int bar;
};
struct baz : foo {};
typedef baz::bar bazbar;
// ^ This compiles... huh??
int main() {}
We can simplify your failing example down to:
template <typename T>
struct Base { using type = T; };
template <typename T>
struct Derived : Base<T>
{
type mem; // error: 'type' does not name a type
};
The issue is that type
here is a dependent name. It depends on T
. There is no guarantee that for a given T
there isn't some specialization of Base<T>
which does not name type
. As such, base templates of class templates are not part of the standard name lookup, so you have to qualify it:
Base<T>::type mem;
Although now we run afoul of the rule which indicates that dependent names are not assumed to be types unless explicitly states as such, so you need:
typename Base<T>::type mem;
None of the other cases presented in the OP rely upon unqualified lookup of a dependent name.
To return to the specific problem, this doesn't compile:
static result_type apply(input_type i) {
because result_type
and input_type
are dependent types and so must be qualified and prefixed with typename
:
static typename FuncPtrTypes<T>::result_type apply(typename FuncPtrTypes<T>::input_type i) {
Or, if you prefer, you can simply bring both names in with a using-declaration:
using typename FuncPtrTypes<T>::input_type;
using typename FuncPtrTypes<T>::result_type;
static result_type apply(input_type i) {
The code below will compile:
template <typename T, typename FuncPtrTypes<T>::func_ptr_type me>
struct FuncPtr : FuncPtrTypes<T> {
static typename FuncPtrTypes<T>::result_type apply(typename FuncPtrTypes<T>::input_type i) {
return me(i);
}
};
The problem is basically that c++ templates have a two phased lookup during compilation. The first phase is a syntactical lookup, while the second phase performs the compilation in terms of the actual type.
To expand further:
The problem is that result_type might be either a global symbol or inherited, and during the first phase of lookup it is assumed that it is global, as the type that is dependent on T is not parsed/evaluated at that stage/phase of compilation.
See: where typenames are required
Another possible solution to your problem, is to use traits (e.g):
template <class T>
struct FuncPtrTraits
{
typedef int result_type;
typedef T input_type;
typedef result_type(*func_ptr_type)(input_type);
};
template <typename T, typename TraitsT = FuncPtrTraits<T> >
struct FuncPtr
static typename TraitsT::result_type apply(typename TraitsT::input_type i) {
return me(i);
}
};
When designed correctly traits can help one modify code from the outside, and also partially, when you inherit from the base trait type.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With