Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

How can I split a column of tuples in a Pandas dataframe?

People also ask

How do I split a column in a DataFrame pandas?

Split column by delimiter into multiple columnsApply the pandas series str. split() function on the “Address” column and pass the delimiter (comma in this case) on which you want to split the column. Also, make sure to pass True to the expand parameter.

How do you split a tuple in Python?

To split a tuple, just list the variable names separated by commas on the left-hand side of an equals sign, and then a tuple on the right-hand side.

How do I split a column into multiple columns in list in pandas?

To split a pandas column of lists into multiple columns, create a new dataframe by applying the tolist() function to the column. The following is the syntax. You can also pass the names of new columns resulting from the split as a list.

How do I split a single column into multiple columns in Python?

We can use str. split() to split one column to multiple columns by specifying expand=True option. We can use str. extract() to exract multiple columns using regex expression in which multiple capturing groups are defined.


You can do this by doing pd.DataFrame(col.tolist()) on that column:

In [2]: df = pd.DataFrame({'a':[1,2], 'b':[(1,2), (3,4)]})

In [3]: df
Out[3]:
   a       b
0  1  (1, 2)
1  2  (3, 4)

In [4]: df['b'].tolist()
Out[4]: [(1, 2), (3, 4)]

In [5]: pd.DataFrame(df['b'].tolist(), index=df.index)
Out[5]:
   0  1
0  1  2
1  3  4

In [6]: df[['b1', 'b2']] = pd.DataFrame(df['b'].tolist(), index=df.index)

In [7]: df
Out[7]:
   a       b  b1  b2
0  1  (1, 2)   1   2
1  2  (3, 4)   3   4

Note: in an earlier version, this answer recommended to use df['b'].apply(pd.Series) instead of pd.DataFrame(df['b'].tolist(), index=df.index). That works as well (because it makes a Series of each tuple, which is then seen as a row of a dataframe), but it is slower / uses more memory than the tolist version, as noted by the other answers here (thanks to denfromufa).


The str accessor that is available to pandas.Series objects of dtype == object is actually an iterable.

Assume a pandas.DataFrame df:

df = pd.DataFrame(dict(col=[*zip('abcdefghij', range(10, 101, 10))]))

df

        col
0   (a, 10)
1   (b, 20)
2   (c, 30)
3   (d, 40)
4   (e, 50)
5   (f, 60)
6   (g, 70)
7   (h, 80)
8   (i, 90)
9  (j, 100)

We can test if it is an iterable:

from collections import Iterable

isinstance(df.col.str, Iterable)

True

We can then assign from it like we do other iterables:

var0, var1 = 'xy'
print(var0, var1)

x y

Simplest solution

So in one line we can assign both columns:

df['a'], df['b'] = df.col.str

df

        col  a    b
0   (a, 10)  a   10
1   (b, 20)  b   20
2   (c, 30)  c   30
3   (d, 40)  d   40
4   (e, 50)  e   50
5   (f, 60)  f   60
6   (g, 70)  g   70
7   (h, 80)  h   80
8   (i, 90)  i   90
9  (j, 100)  j  100

Faster solution

Only slightly more complicated, we can use zip to create a similar iterable:

df['c'], df['d'] = zip(*df.col)

df

        col  a    b  c    d
0   (a, 10)  a   10  a   10
1   (b, 20)  b   20  b   20
2   (c, 30)  c   30  c   30
3   (d, 40)  d   40  d   40
4   (e, 50)  e   50  e   50
5   (f, 60)  f   60  f   60
6   (g, 70)  g   70  g   70
7   (h, 80)  h   80  h   80
8   (i, 90)  i   90  i   90
9  (j, 100)  j  100  j  100

Inline

Meaning, don't mutate existing df.

This works because assign takes keyword arguments where the keywords are the new (or existing) column names and the values will be the values of the new column. You can use a dictionary and unpack it with ** and have it act as the keyword arguments.

So this is a clever way of assigning a new column named 'g' that is the first item in the df.col.str iterable and 'h' that is the second item in the df.col.str iterable:

df.assign(**dict(zip('gh', df.col.str)))

        col  g    h
0   (a, 10)  a   10
1   (b, 20)  b   20
2   (c, 30)  c   30
3   (d, 40)  d   40
4   (e, 50)  e   50
5   (f, 60)  f   60
6   (g, 70)  g   70
7   (h, 80)  h   80
8   (i, 90)  i   90
9  (j, 100)  j  100

My version of the list approach

With modern list comprehension and variable unpacking. Note: also inline using join

df.join(pd.DataFrame([*df.col], df.index, [*'ef']))

        col  g    h
0   (a, 10)  a   10
1   (b, 20)  b   20
2   (c, 30)  c   30
3   (d, 40)  d   40
4   (e, 50)  e   50
5   (f, 60)  f   60
6   (g, 70)  g   70
7   (h, 80)  h   80
8   (i, 90)  i   90
9  (j, 100)  j  100

The mutating version would be

df[['e', 'f']] = pd.DataFrame([*df.col], df.index)

Naive Time Test

Short DataFrame

Use the one defined above:

%timeit df.assign(**dict(zip('gh', df.col.str)))
%timeit df.assign(**dict(zip('gh', zip(*df.col))))
%timeit df.join(pd.DataFrame([*df.col], df.index, [*'gh']))

1.16 ms ± 21.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
635 µs ± 18.7 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
795 µs ± 42.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
Long DataFrame

10^3 times bigger

df = pd.concat([df] * 1000, ignore_index=True)

%timeit df.assign(**dict(zip('gh', df.col.str)))
%timeit df.assign(**dict(zip('gh', zip(*df.col))))
%timeit df.join(pd.DataFrame([*df.col], df.index, [*'gh']))

11.4 ms ± 1.53 ms per loop (mean ± std. dev. of 7 runs, 100 loops each)
2.1 ms ± 41.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
2.33 ms ± 35.1 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

On much larger datasets, I found that .apply() is few orders of magnitude slower than pd.DataFrame(df['b'].values.tolist(), index=df.index).

This performance issue was closed in GitHub, although I do not agree with this decision:

performance issue - apply with pd.Series vs tuple #11615

It is based on this answer.


I think a simpler way is:

>>> import pandas as pd
>>> df = pd.DataFrame({'a':[1,2], 'b':[(1,2), (3,4)]})
>>> df
   a       b
0  1  (1, 2)
1  2  (3, 4)
>>> df['b_a'] = df['b'].str[0]
>>> df['b_b'] = df['b'].str[1]
>>> df
   a       b  b_a  b_b
0  1  (1, 2)    1    2
1  2  (3, 4)    3    4

A caveat of the second solution,

pd.DataFrame(df['b'].values.tolist())

is that it will explicitly discard the index, and add in a default sequential index, whereas the accepted answer

apply(pd.Series)

will not, since the result of apply will retain the row index. While the order is initially retained from the original array, Pandas will try to match the indices from the two dataframes.

This can be very important if you are trying to set the rows into an numerically indexed array, and Pandas will automatically try to match the index of the new array to the old, and cause some distortion in the ordering.

A better hybrid solution would be to set the index of the original dataframe onto the new, i.e.,

pd.DataFrame(df['b'].values.tolist(), index=df.index)

Which will retain the speed of using the second method while ensuring the order and indexing is retained on the result.


extra is another option, use the data from https://opendataportal-lasvegas.opendata.arcgis.com/datasets/restaurant-inspections-open-data/explore

import pandas as pd
df = pd.read_csv('raw_data.csv', low_memory=False)
df[['latitude', 'longitude']] = df['Location_1'].str.extract(pat = '(-?\d+\.\d+),\s*(-?\d+\.\d+)')
df.to_csv('result.csv')