I have a spark dataframe with this schema:
root
|-- product_id: integer (nullable = true)
|-- stock: integer (nullable = true)
|-- start_date: date (nullable = true)
|-- end_date: date (nullable = true)
When trying to pass it to a pandas_udf
or convert to a pandas dataframe with:
pandas_df = spark_df.toPandas()
It returns this error:
AttributeError Traceback (most recent call last)
<ipython-input-86-4bccc6e8422d> in <module>()
10 # spark_df.printSchema()
11
---> 12 pandas_df = spark_df.toPandas()
/home/.../lib/python2.7/site-packages/pyspark/sql/dataframe.pyc in toPandas(self)
2123 table = pyarrow.Table.from_batches(batches)
2124 pdf = table.to_pandas()
-> 2125 pdf = _check_dataframe_convert_date(pdf, self.schema)
2126 return _check_dataframe_localize_timestamps(pdf, timezone)
2127 else:
/home.../lib/python2.7/site-packages/pyspark/sql/types.pyc in _check_dataframe_convert_date(pdf, schema)
1705 """
1706 for field in schema:
-> 1707 pdf[field.name] = _check_series_convert_date(pdf[field.name], field.dataType)
1708 return pdf
1709
/home/.../lib/python2.7/site-packages/pyspark/sql/types.pyc in _check_series_convert_date(series, data_type)
1690 """
1691 if type(data_type) == DateType:
-> 1692 return series.dt.date
1693 else:
1694 return series
/home/.../lib/python2.7/site-packages/pandas/core/generic.pyc in __getattr__(self, name)
5061 if (name in self._internal_names_set or name in self._metadata or
5062 name in self._accessors):
-> 5063 return object.__getattribute__(self, name)
5064 else:
5065 if self._info_axis._can_hold_identifiers_and_holds_name(name):
/home/.../lib/python2.7/site-packages/pandas/core/accessor.pyc in __get__(self, obj, cls)
169 # we're accessing the attribute of the class, i.e., Dataset.geo
170 return self._accessor
--> 171 accessor_obj = self._accessor(obj)
172 # Replace the property with the accessor object. Inspired by:
173 # http://www.pydanny.com/cached-property.html
/home/.../lib/python2.7/site-packages/pandas/core/indexes/accessors.pyc in __new__(cls, data)
322 pass # we raise an attribute error anyway
323
--> 324 raise AttributeError("Can only use .dt accessor with datetimelike "
325 "values")
AttributeError: Can only use .dt accessor with datetimelike values
If the date fields are dropped from the spark dataframe the conversion works without problems.
I checked that the data doesn't contains any nulls but it would be nice to know how to deal with those too.
I'm using python2.7 with:
Looks like a bug. Have the same issue with pyarrow==0.12.1 and pyarrow==0.12.0. Casting spark dataframe column to TIMESTAMP works for me.
spark.sql('SELECT CAST(date_column as TIMESTAMP) FROM foo')
Also rolling back to pyarrow==0.11.0 solves the issue. (my python is 3.7.1 and pandas 0.24.2)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With