I have a data frame which have two columns in JSON format, like this:
author biblio series
Mehrdad Vahabi {'volume': 68, 'month': 'January', {'handle':'RePEc:aka:aoecon', 'name': 'Oeconomica'}
'name': 'János Kornai',
'issue': 's', 'handle':
'n:v:68:y:2018:i',
'year': '2018',
'pages': '27-52', 'doi': ''}
Michael Bailey {'c_date': '2017', 'number': {'handle': '', 'name': ''}
'23608', 'handle': 'RePEc:nbr:
nberwo:23608', 'name': 'Measuring'}
I Want to my data frame looks like this:
author biblio.volume biblio.month biblio.name biblio.issue biblio.handle bibilio.year biblio.pages biblio.doi biblio.c_date bibi¡lio.number series.handle series.name
Mehrdad Vahabi 68 January János Kornai s n:v:68:y:2018:i 2018 27-52 NA NA RePEc:aka:aoecon Oeconomica
Michael Bailey NA Na Meausuring NA nberwo:23608 NA NA NA 2017 23608
I try do it using the answers in this question, but no one works for me.
How can I do it?
[EDIT] Here is a sample of the data
[EDIT]
Following the @jezrael solution I get this:
df1 = pd.DataFrame(df['biblio'].values.tolist())
df1.columns = 'biblio.'+ df1.columns
df2 = pd.DataFrame(df['series'].values.tolist())
df2.columns = 'series.'+ df2.columns
col = df.columns.difference(['biblio','series'])
df = pd.concat([df[col], df1, df2],axis=1)
print (df)
Traceback (most recent call last):
File "dfs.py", line 8, in <module>
df1.columns = 'bibliographic.'+ df1.columns
File "/Users/danielotero/anaconda3/lib/python3.6/site-
packages/pandas/core/indexes/range.py", line 583, in _evaluate_numeric_binop
other = self._validate_for_numeric_binop(other, op, opstr)
File "/Users/danielotero/anaconda3/lib/python3.6/site-
packages/pandas/core/indexes/base.py", line 3961, in
_validate_for_numeric_binop
raise TypeError("can only perform ops with scalar values")
TypeError: can only perform ops with scalar values
And with json_normalize
:
Traceback (most recent call last):
File "/Users/danielotero/anaconda3/lib/python3.6/site-packages/pandas/core/indexes/base.py", line 2525, in get_loc
return self._engine.get_loc(key)
File "pandas/_libs/index.pyx", line 117, in pandas._libs.index.IndexEngine.get_loc
File "pandas/_libs/index.pyx", line 139, in pandas._libs.index.IndexEngine.get_loc
File "pandas/_libs/hashtable_class_helper.pxi", line 1265, in pandas._libs.hashtable.PyObjectHashTable.get_item
File "pandas/_libs/hashtable_class_helper.pxi", line 1273, in pandas._libs.hashtable.PyObjectHashTable.get_item
KeyError: 0
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "dfs.py", line 7, in <module>
df = json_normalize(d)
File "/Users/danielotero/anaconda3/lib/python3.6/site-packages/pandas/io/json/normalize.py", line 192, in json_normalize
if any([isinstance(x, dict) for x in compat.itervalues(data[0])]):
File "/Users/danielotero/anaconda3/lib/python3.6/site-packages/pandas/core/frame.py", line 2139, in __getitem__
return self._getitem_column(key)
File "/Users/danielotero/anaconda3/lib/python3.6/site-packages/pandas/core/frame.py", line 2146, in _getitem_column
return self._get_item_cache(key)
File "/Users/danielotero/anaconda3/lib/python3.6/site-packages/pandas/core/generic.py", line 1842, in _get_item_cache
values = self._data.get(item)
File "/Users/danielotero/anaconda3/lib/python3.6/site-packages/pandas/core/internals.py", line 3843, in get
loc = self.items.get_loc(item)
File "/Users/danielotero/anaconda3/lib/python3.6/site-packages/pandas/core/indexes/base.py", line 2527, in get_loc
return self._engine.get_loc(self._maybe_cast_indexer(key))
File "pandas/_libs/index.pyx", line 117, in pandas._libs.index.IndexEngine.get_loc
File "pandas/_libs/index.pyx", line 139, in pandas._libs.index.IndexEngine.get_loc
File "pandas/_libs/hashtable_class_helper.pxi", line 1265, in pandas._libs.hashtable.PyObjectHashTable.get_item
File "pandas/_libs/hashtable_class_helper.pxi", line 1273, in pandas._libs.hashtable.PyObjectHashTable.get_item
KeyError: 0
Following the @Jhon H solution, I get this:
Traceback (most recent call last):
File "dfs.py", line 7, in <module>
jsonSeries = df[['bibliographic']].tolist()
File "/Users/danielotero/anaconda3/lib/python3.6/site-packages/pandas/core/generic.py", line 3614, in __getattr__
return object.__getattribute__(self, name)
AttributeError: 'DataFrame' object has no attribute 'tolist'
In Pandas, the apply() method can also be used to split one column values into multiple columns. The DataFrame. apply method() can execute a function on all values of single or multiple columns. Then inside that function, we can split the string value to multiple values.
Create for each dict
column new DataFrame
by constructor and last concat
all together:
df1 = pd.DataFrame(df['biblio'].values.tolist())
df1.columns = 'biblio.'+ df1.columns
df2 = pd.DataFrame(df['series'].values.tolist())
df2.columns = 'series.'+ df2.columns
col = df.columns.difference(['biblio','series'])
df = pd.concat([df[col], df1, df2],axis=1)
print (df)
author biblio.c_date biblio.doi biblio.handle \
0 Mehrdad Vahabi NaN n:v:68:y:2018:i
1 Michael Bailey 2017 NaN RePEc:nbr:nberwo:23608
biblio.issue biblio.month biblio.name biblio.number biblio.pages \
0 s January Janos Kornai NaN 27-52
1 NaN NaN Measuring 23608 NaN
biblio.volume biblio.year series.handle series.name
0 68.0 2018 RePEc:aka:aoecon Oeconomica
1 NaN NaN
EDIT:
If input is json
is possible use json_normalize
:
from pandas.io.json import json_normalize
d = [{"author":"Mehrdad Vahabi","biblio":{"volume":68,"month":"January","name":"Janos Kornai","issue":"s","handle":"n:v:68:y:2018:i","year":"2018","pages":"27-52","doi":""},"series":{"handle":"RePEc:aka:aoecon","name":"Oeconomica"}},{"author":"Michael Bailey","biblio":{"c_date":"2017","number":"23608","handle":"RePEc:nbr:nberwo:23608","name":"Measuring"},"series":{"handle":"","name":""}}]
df = json_normalize(d)
print (df)
author biblio.c_date biblio.doi biblio.handle \
0 Mehrdad Vahabi NaN n:v:68:y:2018:i
1 Michael Bailey 2017 NaN RePEc:nbr:nberwo:23608
biblio.issue biblio.month biblio.name biblio.number biblio.pages \
0 s January Janos Kornai NaN 27-52
1 NaN NaN Measuring 23608 NaN
biblio.volume biblio.year series.handle series.name
0 68.0 2018 RePEc:aka:aoecon Oeconomica
1 NaN NaN
EDIT: There is problem your dictionaries are strings, so first is necessary use ast.literal_eval
for convert:
import ast
df = pd.read_csv('probe.csv')
#print (df)
df1 = pd.DataFrame(df['bibliographic'].apply(ast.literal_eval).values.tolist())
df1.columns = 'bibliographic.'+ df1.columns
df2 = pd.DataFrame(df['series'].apply(ast.literal_eval).values.tolist())
df2.columns = 'series.'+ df2.columns
col = df.columns.difference(['bibliographic','series'])
df = pd.concat([df[col], df1, df2],axis=1)
You need to process the columns individually and join them all together to get the format that you need. Here is a simple example that you could follow
import pandas as pd
records = [{'col1':'v1','col2':{'a1':1,'b1':1},'col3':{'c1':1,'d1':1}},
{'col1':'v2','col2':{'a1':2,'b1':2},'col3':{'c1':2,'d1':2}}]
sample_df = pd.DataFrame(records)
sample_df
col1 col2 col3
0 v1 {'a1': 1, 'b1': 1} {'c1': 1, 'd1': 1}
1 v2 {'a1': 2, 'b1': 2} {'c1': 2, 'd1': 2}
col2_expanded = sample_df.col2.apply(lambda x:pd.Series(x))
col2_expanded.columns = ['{}.{}'.format('col2',i) for i in col2_expanded]
col2_expanded
col2.a1 col2.b1
0 1 1
1 2 2
col3_expanded = sample_df.col3.apply(lambda x:pd.Series(x))
col3_expanded.columns = ['{}.{}'.format('col3',i) for i in col3_expanded]
col3_expanded
col3.c1 col3.d1
0 1 1
1 2 2
final = pd.concat([sample_df[['col1']],col2_expanded,col3_expanded],axis=1)
final
col1 col2.a1 col2.b1 col3.c1 col3.d1
0 v1 1 1 1 1
1 v2 2 2 2 2
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With