I want to have a table of 10 largest objects in memory, with size.
Equivalent function in R: Tricks to manage the available memory in an R session
lsos()
# Type Size(MB) Rows Columns
#d2 data.table 157.8364 281444 74
#d data.table 62.2658 816078 11
Edit: @ 9.0 Here is my attempt.
I have to use globals()
, using gc.get_objects()
makes my computer very slow. I am not sure globals()
gives me what I want.
How to get the list of all initialized objects and function definitions alive in python?
def lsos(n=10):
import pandas as pd
import sys
all_obj =globals()
object_name = list(all_obj).copy()
object_size = [sys.getsizeof(all_obj[x]) for x in object_name]
d = pd.DataFrame(dict(name = object_name, size = object_size))
d.sort_values(['size'], ascending=[0],inplace=True)
return(d.head(n))
v = list(range(1000))
v2 = list(range(10000))
v3 = list(range(100000))
v4 = v3
lsos()
# name size
# 0 v4 900112
# 22 v3 900112
# 1 v2 90112
# 17 v 9112
# 6 _i 395
# 14 _i1 395
# 19 _oh 288
# 24 Out 288
# 5 _i2 137
# 3 lsos 136
When I put the above function in say abc.py
and run
import abc
abc.lsos()
# name size
# 8 __builtins__ 6240
# 0 lsos 136
# 6 __file__ 123
# 2 __cached__ 97
# 1 __loader__ 56
# 4 __spec__ 56
# 5 __name__ 54
# 3 __package__ 49
# 7 __doc__ 16
None of the large v
appears.
Edit 2:
Because there's problem of accessing globals()
in a module, I just pass globals()
to the module, here is what I am using now:
#abc.py
def lsos(all_obj = globals(),n=10):
import sys
object_name = list(all_obj)
object_size = [ round(sys.getsizeof(all_obj[x])/1024.0/1024.0,4) for x in object_name]
object_id = [id(all_obj[x]) for x in object_name]
d = [(a,b,c) for a,b,c in zip(object_name, object_size, object_id)]
d.sort(key = lambda x:(x[1],x[2]), reverse=True)
dprint = d[0:min(len(d), n)]
#print formating
name_width_max = max([len(x[0]) for x in dprint])
print(("{:<" + str(name_width_max +2) + "}{:11}{}").format("name","size_Mb","id"))
fmt = '{{:<{}}}'.format(name_width_max+2) +" "+ "{: 5.4f}" +" "+ "{:d}"
for line in dprint:
print( fmt.format(*line))
return
Then it can be called by
import abc
abc.lsos(globals())
The simplest is to use Pympler:
from operator import itemgetter
from pympler import tracker
mem = tracker.SummaryTracker()
print(sorted(mem.create_summary(), reverse=True, key=itemgetter(2))[:10])
Output:
[["<class 'float", 5004102, 120098448],
["<class 'list", 74279, 48527480],
["<class 'str", 214166, 23782488],
["<class 'dict", 14710, 7109016],
["<class 'code", 27702, 3991737],
["<class 'type", 3480, 3714520],
["<class 'jedi.parser.python.tree.Operator", 24936, 2393856],
["<class 'jedi.parser.python.tree.Name", 19965, 1916640],
["<class 'jedi.parser.python.tree.PythonNode", 23550, 1884000],
["<class 'int", 47671, 1382592]]
Of course, you can also create a pandas dataframe and work with this:
memory = pd.DataFrame(mem.create_summary(), columns=['object', 'number_of_objects', 'memory'])
memory['mem_per_object'] = memory['memory'] / memory['number_of_objects']
print(memory.sort_values('memory', ascending=False).head(10))
print(memory.sort_values('mem_per_object', ascending=False).head(10))
Output:
object number_of_objects memory mem_per_object
11 <class 'float 5004112 120098688 24.000000
42 <class 'list 74322 48532112 652.997928
2 <class 'str 214308 23797202 111.042061
44 <class 'dict 14738 7116184 482.845976
10 <class 'code 27702 3991737 144.095625
59 <class 'type 3480 3715616 1067.705747
9421 <class 'jedi.parser.python.tree.Operator 24928 2393088 96.000000
9422 <class 'jedi.parser.python.tree.Name 19962 1916352 96.000000
9420 <class 'jedi.parser.python.tree.PythonNode 23544 1883520 80.000000
10637 <class 'pandas.core.series.Series 102 1721291 16875.401961
object number_of_objects memory mem_per_object
237 <class '_io.BufferedWriter 3 393744 131248.000000
11518 <class 'pandas.core.frame.DataFrame 24 1709443 71226.791667
12358 <class 'matplotlib.colors._ColorMapping 1 36984 36984.000000
8946 <class 'pytz.lazy.LazySet.__new__.<locals>.Laz... 2 66000 33000.000000
10637 <class 'pandas.core.series.Series 102 1721291 16875.401961
235 <class '_io.BufferedReader 1 16560 16560.000000
11599 <class 'pandas.core.indexes.numeric.Int64Index 11 129184 11744.000000
12719 <class 'matplotlib._cm._deprecation_datad 2 9440 4720.000000
8945 <class 'pytz.lazy.LazyList.__new__.<locals>.La... 2 9248 4624.000000
1594 <class 'random.Random 1 2560 2560.000000
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With