Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Efficiently find overlap of date-time ranges from 2 dataframes

There are some questions out there regarding finding the overlap in date or time ranges (for example). I've used these to solve my problem, but I've ended up with an extremely slow (and not-at-all elegant) solution to my problem. I would really appreciate it if someone has an idea of how to make this faster (and more elegant):

The Problem:

I've got 2 dataframes, df1 and df2, each with 2 columns that represent a start time and an end time:

>>> df1

        datetime_start        datetime_end
0  2016-09-11 06:00:00 2016-09-11 06:30:00
1  2016-09-11 07:00:00 2016-09-11 07:30:00
2  2016-09-11 07:30:00 2016-09-11 08:00:00
3  2016-09-11 08:00:00 2016-09-11 08:30:00
4  2016-09-11 08:30:00 2016-09-11 09:00:00
5  2016-09-11 09:00:00 2016-09-11 09:30:00
6  2016-09-11 09:30:00 2016-09-11 10:00:00
7  2016-09-11 10:30:00 2016-09-11 11:00:00
13 2016-09-11 14:00:00 2016-09-11 14:30:00
14 2016-09-11 14:30:00 2016-09-11 15:00:00
15 2016-09-11 15:00:00 2016-09-11 15:30:00
16 2016-09-11 15:30:00 2016-09-11 16:00:00
17 2016-09-11 16:00:00 2016-09-11 16:30:00
18 2016-09-11 16:30:00 2016-09-11 17:00:00
19 2016-09-11 17:00:00 2016-09-11 17:30:00

>>> df2

        datetime_start        datetime_end catg
4  2016-09-11 08:48:33 2016-09-11 09:41:53    a
6  2016-09-11 09:54:25 2016-09-11 10:00:50    a
8  2016-09-11 10:01:47 2016-09-11 10:04:55    b
10 2016-09-11 10:08:00 2016-09-11 10:08:11    b
12 2016-09-11 10:30:28 2016-09-11 10:30:28    b
14 2016-09-11 10:38:18 2016-09-11 10:38:18    a
18 2016-09-11 13:44:05 2016-09-11 13:44:05    a
20 2016-09-11 13:46:52 2016-09-11 14:11:41    d
23 2016-09-11 14:22:17 2016-09-11 14:33:40    b
25 2016-09-11 15:00:12 2016-09-11 15:02:55    b
27 2016-09-11 15:04:19 2016-09-11 15:06:36    b
29 2016-09-11 15:08:43 2016-09-11 15:31:29    d
31 2016-09-11 15:38:04 2016-09-11 16:09:24    a
33 2016-09-11 16:18:40 2016-09-11 16:44:32    b
35 2016-09-11 16:45:59 2016-09-11 16:59:01    b
37 2016-09-11 17:08:31 2016-09-11 17:12:23    b
39 2016-09-11 17:16:13 2016-09-11 17:16:33    c
41 2016-09-11 17:17:23 2016-09-11 17:20:00    b
45 2016-09-13 12:27:59 2016-09-13 12:34:21    a
47 2016-09-13 12:38:39 2016-09-13 12:38:45    a

What I want is to find where the ranges in df2 have overlap with the ranges in df1, how long that overlap is (in seconds), and what value of df2.catg that is. I want the length of that overlap inserted into a column in df1 (that column will be named for the catg it represents).

Desired output:

>>> df1
        datetime_start        datetime_end       a       b       d     c
0  2016-09-11 06:00:00 2016-09-11 06:30:00     0.0     0.0     0.0   0.0
1  2016-09-11 07:00:00 2016-09-11 07:30:00     0.0     0.0     0.0   0.0
2  2016-09-11 07:30:00 2016-09-11 08:00:00     0.0     0.0     0.0   0.0
3  2016-09-11 08:00:00 2016-09-11 08:30:00     0.0     0.0     0.0   0.0
4  2016-09-11 08:30:00 2016-09-11 09:00:00   687.0     0.0     0.0   0.0
5  2016-09-11 09:00:00 2016-09-11 09:30:00  1800.0     0.0     0.0   0.0
6  2016-09-11 09:30:00 2016-09-11 10:00:00  1048.0     0.0     0.0   0.0
7  2016-09-11 10:30:00 2016-09-11 11:00:00     0.0     0.0     0.0   0.0
13 2016-09-11 14:00:00 2016-09-11 14:30:00     0.0   463.0   701.0   0.0
14 2016-09-11 14:30:00 2016-09-11 15:00:00     0.0   220.0     0.0   0.0
15 2016-09-11 15:00:00 2016-09-11 15:30:00     0.0   300.0  1277.0   0.0
16 2016-09-11 15:30:00 2016-09-11 16:00:00  1316.0     0.0    89.0   0.0
17 2016-09-11 16:00:00 2016-09-11 16:30:00   564.0   680.0     0.0   0.0
18 2016-09-11 16:30:00 2016-09-11 17:00:00     0.0  1654.0     0.0   0.0
19 2016-09-11 17:00:00 2016-09-11 17:30:00     0.0   389.0     0.0  20.0

The ridiculously slow way to do this:

Based on this beautiful answer, I've achieved the goals I want using the following hard to follow code:

from collections import namedtuple
Range = namedtuple('Range', ['start', 'end'])

def overlap(row1, row2):
    r1 = Range(start=row1.datetime_start, end=row1.datetime_end)
    r2 = Range(start=row2.datetime_start, end=row2.datetime_end)
    latest_start = max(r1.start, r2.start)
    earliest_end = min(r1.end, r2.end)
    delta = (earliest_end - latest_start).total_seconds()
    overlap = max(0, delta)
    return overlap

for cat in df2.catg.unique().tolist():
    df1[cat] = 0

for idx1, row1 in df1.iterrows():
    for idx2, row2 in df2.iterrows():
        if overlap(row1, row2) > 0:
            df1.loc[idx1, row2.catg] += overlap(row1, row2)

This works, but is soooo slow on larger dataframes that it's basically un-useable. If anyone has any ideas to speed this up, I'd love your input.

Thanks in advance, and let me know if something is unclear!

dataframe setup:

import pandas as pd
from pandas import Timestamp

d1 = {'datetime_start': {0: Timestamp('2016-09-11 06:00:00'), 1: Timestamp('2016-09-11 07:00:00'), 2: Timestamp('2016-09-11 07:30:00'), 3: Timestamp('2016-09-11 08:00:00'), 4: Timestamp('2016-09-11 08:30:00'), 5: Timestamp('2016-09-11 09:00:00'), 6: Timestamp('2016-09-11 09:30:00'), 7: Timestamp('2016-09-11 10:30:00'), 13: Timestamp('2016-09-11 14:00:00'), 14: Timestamp('2016-09-11 14:30:00'), 15: Timestamp('2016-09-11 15:00:00'), 16: Timestamp('2016-09-11 15:30:00'), 17: Timestamp('2016-09-11 16:00:00'), 18: Timestamp('2016-09-11 16:30:00'), 19: Timestamp('2016-09-11 17:00:00')}, 'datetime_end': {0: Timestamp('2016-09-11 06:30:00'), 1: Timestamp('2016-09-11 07:30:00'), 2: Timestamp('2016-09-11 08:00:00'), 3: Timestamp('2016-09-11 08:30:00'), 4: Timestamp('2016-09-11 09:00:00'), 5: Timestamp('2016-09-11 09:30:00'), 6: Timestamp('2016-09-11 10:00:00'), 7: Timestamp('2016-09-11 11:00:00'), 13: Timestamp('2016-09-11 14:30:00'), 14: Timestamp('2016-09-11 15:00:00'), 15: Timestamp('2016-09-11 15:30:00'), 16: Timestamp('2016-09-11 16:00:00'), 17: Timestamp('2016-09-11 16:30:00'), 18: Timestamp('2016-09-11 17:00:00'), 19: Timestamp('2016-09-11 17:30:00')}}

d2 = {'datetime_start': {4: Timestamp('2016-09-11 08:48:33'), 6: Timestamp('2016-09-11 09:54:25'), 8: Timestamp('2016-09-11 10:01:47'), 10: Timestamp('2016-09-11 10:08:00'), 12: Timestamp('2016-09-11 10:30:28'), 14: Timestamp('2016-09-11 10:38:18'), 18: Timestamp('2016-09-11 13:44:05'), 20: Timestamp('2016-09-11 13:46:52'), 23: Timestamp('2016-09-11 14:22:17'), 25: Timestamp('2016-09-11 15:00:12'), 27: Timestamp('2016-09-11 15:04:19'), 29: Timestamp('2016-09-11 15:08:43'), 31: Timestamp('2016-09-11 15:38:04'), 33: Timestamp('2016-09-11 16:18:40'), 35: Timestamp('2016-09-11 16:45:59'), 37: Timestamp('2016-09-11 17:08:31'), 39: Timestamp('2016-09-11 17:16:13'), 41: Timestamp('2016-09-11 17:17:23'), 45: Timestamp('2016-09-13 12:27:59'), 47: Timestamp('2016-09-13 12:38:39')}, 'datetime_end': {4: Timestamp('2016-09-11 09:41:53'), 6: Timestamp('2016-09-11 10:00:50'), 8: Timestamp('2016-09-11 10:04:55'), 10: Timestamp('2016-09-11 10:08:11'), 12: Timestamp('2016-09-11 10:30:28'), 14: Timestamp('2016-09-11 10:38:18'), 18: Timestamp('2016-09-11 13:44:05'), 20: Timestamp('2016-09-11 14:11:41'), 23: Timestamp('2016-09-11 14:33:40'), 25: Timestamp('2016-09-11 15:02:55'), 27: Timestamp('2016-09-11 15:06:36'), 29: Timestamp('2016-09-11 15:31:29'), 31: Timestamp('2016-09-11 16:09:24'), 33: Timestamp('2016-09-11 16:44:32'), 35: Timestamp('2016-09-11 16:59:01'), 37: Timestamp('2016-09-11 17:12:23'), 39: Timestamp('2016-09-11 17:16:33'), 41: Timestamp('2016-09-11 17:20:00'), 45: Timestamp('2016-09-13 12:34:21'), 47: Timestamp('2016-09-13 12:38:45')}, 'catg': {4: 'a', 6: 'a', 8: 'b', 10: 'b', 12: 'b', 14: 'a', 18: 'a', 20: 'd', 23: 'b', 25: 'b', 27: 'b', 29: 'd', 31: 'a', 33: 'b', 35: 'b', 37: 'b', 39: 'c', 41: 'b', 45: 'a', 47: 'a'}}

df1 = pd.DataFrame(d1)
df2 = pd.DataFrame(d2)
like image 813
sacuL Avatar asked Apr 25 '18 21:04

sacuL


People also ask

How do you calculate overlapping time ranges?

Overlap = min(A2, B2) - max(A1, B1) + 1. In other words, the overlap of two integer intervals is a difference between the minimum value of the two upper boundaries and the maximum value of the two lower boundaries, plus 1.

How do you calculate overlapping date range in SQL?

You can do this by swapping the ranges if necessary up front. Then, you can detect overlap if the second range start is: less than or equal to the first range end (if ranges are inclusive, containing both the start and end times); or. less than (if ranges are inclusive of start and exclusive of end).

How do you calculate overlapping date intervals in Excel?

To calculate the number of days that overlap in two date ranges, you can use basic date arithmetic, together with the the MIN and MAX functions. Excel dates are just serial numbers, so you can calculate durations by subtracting the earlier date from the later date.

How do you know if a date is between two dates in a data frame?

between() to Two Dates. You can use pandas. Series. between() method to select DataFrame rows between two dates.


1 Answers

Based on timeit tests, with 100 executions each, the namedtuple approach in the question averaged 15.7314 seconds on my machine, vs. an average of 1.4794 seconds with this approach:

# determine the duration of the events in df2, in seconds
duration = (df2.datetime_end - df2.datetime_start).dt.seconds.values

# create a numpy array with one timestamp for each second 
# in which an event occurred
seconds_range = np.repeat(df2.datetime_start.values, duration) + \
                np.concatenate(map(np.arange, duration)) * pd.Timedelta('1S')

df1.merge(pd.DataFrame({'datetime_start':seconds_range,
                        'catg':np.repeat(df2.catg, duration)}). \
              groupby(['catg', pd.Grouper(key='datetime_start', freq='30min')]). \
              size(). \
              unstack(level=0). \
              reset_index(), 
          how="left")

#           datetime_end      datetime_start       a       b     c       d
# 0  2016-09-11 06:30:00 2016-09-11 06:00:00     NaN     NaN   NaN     NaN
# 1  2016-09-11 07:30:00 2016-09-11 07:00:00     NaN     NaN   NaN     NaN
# 2  2016-09-11 08:00:00 2016-09-11 07:30:00     NaN     NaN   NaN     NaN
# 3  2016-09-11 08:30:00 2016-09-11 08:00:00     NaN     NaN   NaN     NaN
# 4  2016-09-11 09:00:00 2016-09-11 08:30:00   687.0     NaN   NaN     NaN
# 5  2016-09-11 09:30:00 2016-09-11 09:00:00  1800.0     NaN   NaN     NaN
# 6  2016-09-11 10:00:00 2016-09-11 09:30:00  1048.0     NaN   NaN     NaN
# 7  2016-09-11 11:00:00 2016-09-11 10:30:00     NaN     NaN   NaN     NaN
# 8  2016-09-11 14:30:00 2016-09-11 14:00:00     NaN   463.0   NaN   701.0
# 9  2016-09-11 15:00:00 2016-09-11 14:30:00     NaN   220.0   NaN     NaN
# 10 2016-09-11 15:30:00 2016-09-11 15:00:00     NaN   300.0   NaN  1277.0
# 11 2016-09-11 16:00:00 2016-09-11 15:30:00  1316.0     NaN   NaN    89.0
# 12 2016-09-11 16:30:00 2016-09-11 16:00:00   564.0   680.0   NaN     NaN
# 13 2016-09-11 17:00:00 2016-09-11 16:30:00     NaN  1654.0   NaN     NaN
# 14 2016-09-11 17:30:00 2016-09-11 17:00:00     NaN   389.0  20.0     NaN
like image 97
cmaher Avatar answered Oct 11 '22 12:10

cmaher