Ultimately, I am trying to achieve something similar to the following, but leveraging dplyr
instead of plyr
:
library(dplyr)
probs = seq(0, 1, 0.1)
plyr::ldply(tapply(mtcars$mpg,
mtcars$cyl,
function(x) { quantile(x, probs = probs) }))
# .id 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
# 1 4 21.4 21.50 22.80 22.80 24.40 26.0 27.30 30.40 30.40 32.40 33.9
# 2 6 17.8 17.98 18.32 18.98 19.40 19.7 20.48 21.00 21.00 21.16 21.4
# 3 8 10.4 11.27 13.90 14.66 15.04 15.2 15.44 15.86 16.76 18.28 19.2
The best dplyr
equivalent I can come up with is something like this:
library(tidyr)
probs = seq(0, 1, 0.1)
mtcars %>%
group_by(cyl) %>%
do(data.frame(prob = probs, stat = quantile(.$mpg, probs = probs))) %>%
spread(prob, stat)
# cyl 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
# 1 4 21.4 21.50 22.80 22.80 24.40 26.0 27.30 30.40 30.40 32.40 33.9
# 2 6 17.8 17.98 18.32 18.98 19.40 19.7 20.48 21.00 21.00 21.16 21.4
# 3 8 10.4 11.27 13.90 14.66 15.04 15.2 15.44 15.86 16.76 18.28 19.2
Notice that I I also need to use tidyr::spread
. In addition, notice that I have lost the %
formatting for the column headers at the benefit of replacing .id
with cyl
in the first column.
Questions:
dplyr
based approach to accomplishing this
tapply %>% ldply
chain? %
formatting and the proper cyl
column name for the first column?Using dplyr
library(dplyr)
mtcars %>%
group_by(cyl) %>%
do(data.frame(as.list(quantile(.$mpg,probs=probs)), check.names=FALSE))
# cyl 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
#1 4 21.4 21.50 22.80 22.80 24.40 26.0 27.30 30.40 30.40 32.40 33.9
#2 6 17.8 17.98 18.32 18.98 19.40 19.7 20.48 21.00 21.00 21.16 21.4
#3 8 10.4 11.27 13.90 14.66 15.04 15.2 15.44 15.86 16.76 18.28 19.2
Or an option using data.table
library(data.table)
as.data.table(mtcars)[, as.list(quantile(mpg, probs=probs)) , cyl]
# cyl 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
#1: 6 17.8 17.98 18.32 18.98 19.40 19.7 20.48 21.00 21.00 21.16 21.4
#2: 4 21.4 21.50 22.80 22.80 24.40 26.0 27.30 30.40 30.40 32.40 33.9
#3: 8 10.4 11.27 13.90 14.66 15.04 15.2 15.44 15.86 16.76 18.28 19.2
@akrun's version is good, but I would use data_frame_
inside the do
statement.
mtcars %>%
group_by(cyl) %>%
do(data_frame_(quantile(.$mpg, probs = probs)))
## Source: local data frame [3 x 12]
## Groups: cyl
##
## cyl 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
## 1 4 21.4 21.50 22.80 22.80 24.40 26.0 27.30 30.40 30.40 32.40 33.9
## 2 6 17.8 17.98 18.32 18.98 19.40 19.7 20.48 21.00 21.00 21.16 21.4
## 3 8 10.4 11.27 13.90 14.66 15.04 15.2 15.44 15.86 16.76 18.28 19.2
Upon further investigation on why this works, it looks like data_frame_
differs from the usual SE logics used in dplyr
. data_frame_
only takes one argument columns
and really expects a lazy_dots
argument.
If it gets a vector instead, it works, because lazy evaluation of the individual arguments work. So this feature of using data_frame_
on a vector like that may actually be a bug.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With