I understand how to use map to iterate over arguments in a df and create a new list column.
For example,
params <- expand.grid(param_a = c(2, 4, 6)
,param_b = c(3, 6, 9)
,param_c = c(50, 100)
,param_d = c(1, 0)
)
df.preprocessed <- dplyr::as.tbl(params) %>%
dplyr::mutate(test_var = purrr::map(param_a, function(x){
rep(5, x)
}
))
However, how do I use the analogous syntax with pmap in the event that I want to specify more than 2 parameters?
df.preprocessed <- dplyr::as.tbl(params) %>%
dplyr::mutate(test_var = purrr::pmap(list(x = param_a
,y = param_b
,z = param_c
,u = param_d), function(x, y){
rep(5,x)*y
}
)
)
Error output:
Error in mutate_impl(.data, dots) : Evaluation error: unused arguments (z = .l[[c(3, i)]], u = .l[[c(4, i)]]).
With pmap
, the first argument is a list, so you can pass it your data frame directly, and then name your arguments in your function with the same names as the columns in your data frame. You'll need unnest()
to unpack the list elements returned by pmap()
:
df.preprocessed <- dplyr::as.tbl(params) %>%
dplyr::mutate(test_var = purrr::pmap(., function(param_a, param_b, ...){
rep(5, param_a) * param_b
})) %>%
tidyr::unnest()
> df.preprocessed
# A tibble: 144 x 5
param_a param_b param_c param_d test_var
<dbl> <dbl> <dbl> <dbl> <dbl>
1 2 3 50 1 15
2 2 3 50 1 15
3 4 3 50 1 15
4 4 3 50 1 15
5 4 3 50 1 15
6 4 3 50 1 15
7 6 3 50 1 15
8 6 3 50 1 15
9 6 3 50 1 15
10 6 3 50 1 15
# ... with 134 more rows
How about using rowwise
and mutate
directly without map
:
my_fun <- function(param_a, param_b){
rep(5, param_a) * param_b
}
df.preprocessed <- dplyr::as.tbl(params) %>%
rowwise() %>%
dplyr::mutate(test_var = list(my_fun(param_a, param_b))) %>%
tidyr::unnest()
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With