Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

R vectorized array data manipulation

I think there will be much more people interested into this subject. I have some specific task to do in the most efficient way. My base data are: - time indices of buy and sell signals - on the diag of time indicies I have ROC (rate of change) between closest buy-sell pairs:

r <- array(data = NA, 
           dim = c(5, 5), 
           dimnames = list(buy_idx = c(1,5,9,12,16), 
                           sell_idx = c(3,7,10,14,19)))
diag(r) <- c(1.04,0.97,1.07,1.21,1.1)

The task is to generate moving compound ROC on every possible window (buy-sell pairs), and the way I'm solving my task currently:

for(i in 2:5){
  r[1:(i-1),i] <- r[1:(i-1),i-1] * r[i,i]
}

Until I'm not looping it somewhere upper, the time of my solution is very acceptable. Is there a way to change this loop to vectorized solution? Are there any good well documented tutorials to learn vectorized type of thinking in R? - it would be much more valuable than one time solution!

edit 20130709:

Next task highly related to previous task/example. Apply tax value on each transaction (tax in % values). Current solution:

diag(r[,]) <- diag(r[,]) * ((1-(tax/100))^2)
for(i in 2:dim(r)[2]){
  r[1:(i-1),i] <- r[1:(i-1),i] * ((1-(tax/100))^(2*(i:2)))
}

Do you know any more efficient way? or more correct if this doesn't handle everything.

like image 247
jangorecki Avatar asked Jun 19 '13 22:06

jangorecki


Video Answer


1 Answers

If d are your diagonal elements, then everywhere j >= i, r[i,j] is prod(d[i:j]), which can also be written prod(d[1:j]) / prod(d[1:(i-1)]). Hence this trick using the outer ratio of the cumulative product:

d <- c(1.04,0.97,1.07,1.21,1.1)
n <- length(d)
p <- cumprod(c(1, d))
r <- t(outer(p, 1/p, "*"))[-n-1, -1]
r[lower.tri(r)] <- NA

Some benchmarks showing that it does better than OP for some (not all) input sizes:

OP <- function(d) {
   r <- diag(d)
   for(i in 2:length(d)){
     r[1:(i-1),i] <- r[1:(i-1),i-1] * r[i,i]
   }
   r
}

flodel <- function(d) {
   n <- length(d)
   p <- cumprod(c(1, d))
   r <- t(outer(p, 1/p, "*"))[-n-1, -1]
   r[lower.tri(r)] <- NA
   r
}

d <- runif(10)
microbenchmark(OP(d), flodel(d))
# Unit: microseconds
#        expr     min       lq   median      uq     max
# 1 flodel(d)  83.028  85.6135  88.4575  90.153 144.111
# 2     OP(d) 115.993 122.0075 123.4730 126.826 206.892

d <- runif(100)
microbenchmark(OP(d), flodel(d))
# Unit: microseconds
#        expr      min       lq    median       uq      max
# 1 flodel(d)  490.819  545.528  549.6095  566.108  684.043
# 2     OP(d) 1227.235 1260.823 1282.9880 1313.264 3913.322

d <- runif(1000)
microbenchmark(OP(d), flodel(d))
# Unit: milliseconds
#        expr      min        lq    median        uq       max
# 1 flodel(d) 97.78687 106.39425 121.13807 133.99502 154.67168
# 2     OP(d) 53.49014  60.10124  72.56427  85.17864  91.89011

edit to answer 20130709 addition:

I'll assume tax is a scalar and let z <- (1- tax/100)^2. Your final result is r multiplied by a matrix of z raised at different powers. What you want to avoid is compute these powers over and over. Here is what I would do:

pow <- 1L + col(r) - row(r)
pow[lower.tri(pow)] <- NA
tax.mult <- (z^(1:n))[pow]
r <- r * tax.mult
like image 159
flodel Avatar answered Jan 03 '23 12:01

flodel