You'd better not transpose the data.frame while the name column is in it - all numeric values will then be turned into strings!
Here's a solution that keeps numbers as numbers:
# first remember the names
n <- df.aree$name
# transpose all but the first column (name)
df.aree <- as.data.frame(t(df.aree[,-1]))
colnames(df.aree) <- n
df.aree$myfactor <- factor(row.names(df.aree))
str(df.aree) # Check the column types
You can use the transpose
function from the data.table
library. Simple and fast solution that keeps numeric
values as numeric
.
library(data.table)
# get data
data("mtcars")
# transpose
t_mtcars <- transpose(mtcars)
# get row and colnames in order
colnames(t_mtcars) <- rownames(mtcars)
rownames(t_mtcars) <- colnames(mtcars)
df.aree <- as.data.frame(t(df.aree))
colnames(df.aree) <- df.aree[1, ]
df.aree <- df.aree[-1, ]
df.aree$myfactor <- factor(row.names(df.aree))
Take advantage of as.matrix
:
# keep the first column
names <- df.aree[,1]
# Transpose everything other than the first column
df.aree.T <- as.data.frame(as.matrix(t(df.aree[,-1])))
# Assign first column as the column names of the transposed dataframe
colnames(df.aree.T) <- names
With tidyr, one can transpose a dataframe with "pivot_longer" and then "pivot_wider".
To transpose the widely used mtcars dataset, you should first transform rownames to a column (the function rownames_to_column creates a new column, named "rowname").
library(tidyverse)
mtcars %>%
rownames_to_column() %>%
pivot_longer(!rowname, names_to = "col1", values_to = "col2") %>%
pivot_wider(names_from = "rowname", values_from = "col2")
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With