Using reduce(bind_cols), the list elements of same dimension may be combined. However, I would like to know how to combine only same dimension (may be specified dimesion in some way) elements from a list which may have elements of different dimension.
library(tidyverse)
df1 <- data.frame(A1 = 1:10, A2 = 10:1)
df2 <- data.frame(B = 11:30)
df3 <- data.frame(C = 31:40)
ls1 <- list(df1, df3)
ls1
[[1]]
   A1 A2
1   1 10
2   2  9
3   3  8
4   4  7
5   5  6
6   6  5
7   7  4
8   8  3
9   9  2
10 10  1
[[2]]
    C
1  31
2  32
3  33
4  34
5  35
6  36
7  37
8  38
9  39
10 40
ls1 %>%
  reduce(bind_cols)
  A1 A2  C
1   1 10 31
2   2  9 32
3   3  8 33
4   4  7 34
5   5  6 35
6   6  5 36
7   7  4 37
8   8  3 38
9   9  2 39
10 10  1 40
ls2 <- list(df1, df2, df3)
ls2
[[1]]
   A1 A2
1   1 10
2   2  9
3   3  8
4   4  7
5   5  6
6   6  5
7   7  4
8   8  3
9   9  2
10 10  1
[[2]]
    B
1  11
2  12
3  13
4  14
5  15
6  16
7  17
8  18
9  19
10 20
11 21
12 22
13 23
14 24
15 25
16 26
17 27
18 28
19 29
20 30
[[3]]
    C
1  31
2  32
3  33
4  34
5  35
6  36
7  37
8  38
9  39
10 40
ls2 %>%
  reduce(bind_cols)
Error: Can't recycle `..1` (size 10) to match `..2` (size 20).
Run `rlang::last_error()` to see where the error occurred.
Question
Looking for a function to combine all data.frames in a list with an argument of number of rows.
One option could be:
map(split(lst, map_int(lst, NROW)), bind_cols)
$`10`
   A1 A2  C
1   1 10 31
2   2  9 32
3   3  8 33
4   4  7 34
5   5  6 35
6   6  5 36
7   7  4 37
8   8  3 38
9   9  2 39
10 10  1 40
$`20`
    B
1  11
2  12
3  13
4  14
5  15
6  16
7  17
8  18
9  19
10 20
11 21
12 22
13 23
14 24
15 25
16 26
17 27
18 28
19 29
20 30
                        You can use -
n <- 1:max(sapply(ls2, nrow))
res <- do.call(cbind, lapply(ls2, `[`, n, ,drop = FALSE))
res
#     A1 A2  B  C
#1     1 10 11 31
#2     2  9 12 32
#3     3  8 13 33
#4     4  7 14 34
#5     5  6 15 35
#6     6  5 16 36
#7     7  4 17 37
#8     8  3 18 38
#9     9  2 19 39
#10   10  1 20 40
#NA   NA NA 21 NA
#NA.1 NA NA 22 NA
#NA.2 NA NA 23 NA
#NA.3 NA NA 24 NA
#NA.4 NA NA 25 NA
#NA.5 NA NA 26 NA
#NA.6 NA NA 27 NA
#NA.7 NA NA 28 NA
#NA.8 NA NA 29 NA
#NA.9 NA NA 30 NA
A little-bit shorter with purrr::map_dfc
purrr::map_dfc(ls2, `[`, n, , drop = FALSE)
                        We can use cbind.fill from rowr
library(rowr)
do.call(cbind.fill, c(ls2, fill = NA))
                        A base R option using tapply + sapply
tapply(
  ls2,
  sapply(ls2, nrow),
  function(x) do.call(cbind, x)
)
gives
$`10`
   A1 A2  C
1   1 10 31
2   2  9 32
3   3  8 33
4   4  7 34
5   5  6 35
6   6  5 36
7   7  4 37
8   8  3 38
9   9  2 39
10 10  1 40
$`20`
    B
1  11
2  12
3  13
4  14
5  15
6  16
7  17
8  18
9  19
10 20
11 21
12 22
13 23
14 24
15 25
16 26
17 27
18 28
19 29
20 30
                        You may also use if inside reduce if you want to combine similar elements of list (case: when first item in list has priority)
df1 <- data.frame(A1 = 1:10, A2 = 10:1)
df2 <- data.frame(B = 11:30)
df3 <- data.frame(C = 31:40)
ls1 <- list(df1, df3)
ls2 <- list(df1, df2, df3)
library(tidyverse)
reduce(ls2, ~if(nrow(.x) == nrow(.y)){bind_cols(.x, .y)} else {.x})
#>    A1 A2  C
#> 1   1 10 31
#> 2   2  9 32
#> 3   3  8 33
#> 4   4  7 34
#> 5   5  6 35
#> 6   6  5 36
#> 7   7  4 37
#> 8   8  3 38
#> 9   9  2 39
#> 10 10  1 40
Created on 2021-06-09 by the reprex package (v2.0.0)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With