I came across a table of freq. counts today I had to expand into a data frame of raw values. I was able to do it but was wondering if there's a faster way using the reshape package or data.table?
The original table looked like this:
i1 i2 i3 i4 m f
1 0 0 0 0 22 29
2 1 0 0 0 30 50
3 0 1 0 0 13 15
4 0 0 1 0 1 6
5 1 1 0 0 24 67
6 1 0 1 0 5 12
7 0 1 1 0 1 2
8 1 1 1 0 10 22
9 0 0 0 1 10 7
10 1 0 0 1 27 30
11 0 1 0 1 14 4
12 0 0 1 1 1 0
13 1 1 0 1 54 63
14 1 0 1 1 8 10
15 0 1 1 1 8 6
16 1 1 1 1 57 51
Here's an easy grab of the data using dput:
dat <- structure(list(i1 = c(0L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L,
0L, 0L, 1L, 1L, 0L, 1L), i2 = c(0L, 0L, 1L, 0L, 1L, 0L, 1L, 1L,
0L, 0L, 1L, 0L, 1L, 0L, 1L, 1L), i3 = c(0L, 0L, 0L, 1L, 0L, 1L,
1L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L), i4 = c(0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), m = c(22L, 30L,
13L, 1L, 24L, 5L, 1L, 10L, 10L, 27L, 14L, 1L, 54L, 8L, 8L, 57L
), f = c(29L, 50L, 15L, 6L, 67L, 12L, 2L, 22L, 7L, 30L, 4L, 0L,
63L, 10L, 6L, 51L)), .Names = c("i1", "i2", "i3", "i4", "m",
"f"), class = "data.frame", row.names = c(NA, -16L))
My approach(s) to reshape the data (is there a faster way?):
#step 1: method 1 (in this case binding and stacking uses less code than reshape)
dat2 <- data.frame(rbind(dat[,1:4], dat[, 1:4]),
sex = rep(c('m', 'f'), each=16),
n = c(dat$m, dat$f))
dat2
#step 1: method 2
dat3 <- reshape(dat, direction = "long", idvar = 1:4,
varying = list(c("m", "f")),
v.names = c("n"),
timevar = "sex",
times = c("m", "f"))
rownames(dat3) <- 1:nrow(dat3)
dat3 <- data.frame(dat3)
dat3$sex <- as.factor(dat3$sex)
all.equal(dat3, dat2) #just to show both method 1 and 2 give the same data frame
#step 2
dat4 <- dat2[rep(seq_len(nrow(dat2)), dat2$n), 1:5]
rownames(dat4) <- 1:nrow(dat4)
dat4
I assume this is a common problem as when you want to take a table from an article and reproduce it, it requires some unpacking. I am finding myself doing this more and more and want to make sure I'm being efficient.
Here is a one-liner.
dat2 <- ddply(dat, 1:4, summarize, sex = c(rep('m', m), rep('f', f)))
And here's a base R one-liner.
dat2 <- cbind(dat[c(rep(1:nrow(dat), dat$m), rep(1:nrow(dat), dat$f)),1:4],
sex=c(rep("m",sum(dat$m)), rep("f", sum(dat$f))))
Or, a little more generally:
d1 <- dat[,1:4]
d2 <- as.matrix(dat[,5:6])
dat2 <- cbind(d1[rep(rep(1:nrow(dat), ncol(d2)), d2),],
sex=rep(colnames(d2), colSums(d2)))
Given that nobody has posted a data.table
solution (as suggested in the original question)
library(data.table)
DT <- as.data.table(dat)
DT[,list(sex = rep(c('m','f'),c(m,f))), by= list(i1,i2,i3,i4)]
Or, even more succinctly
DT[,list(sex = rep(c('m','f'),c(m,f))), by= 'i1,i2,i3,i4']
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With