I want to resample my xarray object to a lower spatial resolution (LESS PIXELS).
import pandas as pd
import numpy as np
import xarray as xr
time = pd.date_range(np.datetime64('1998-01-02T00:00:00.000000000'), np.datetime64('2005-12-28T00:00:00.000000000'), freq='8D')
x = np.arange(1200)
y = np.arange(1200)
latitude = np.linspace(40,50,1200)
longitude = np.linspace(0,15.5572382,1200)
latitude, longitude = np.meshgrid(latitude, longitude)
BHR_SW = np.ones((365, 1200, 1200))
output_da = xr.DataArray(BHR_SW, coords=[time, y, x])
latitude_da = xr.DataArray(latitude, coords=[y, x])
longitude_da = xr.DataArray(longitude, coords=[y, x])
output_da = output_da.rename({'dim_0':'time','dim_1':'y','dim_2':'x'})
latitude_da = latitude_da.rename({'dim_0':'y','dim_1':'x'})
longitude_da = longitude_da.rename({'dim_0':'y','dim_1':'x'})
output_ds = output_da.to_dataset(name='BHR_SW')
output_ds = output_ds.assign({'latitude':latitude_da, 'longitude':longitude_da})
print(output_ds)
<xarray.Dataset>
Dimensions: (time: 365, x: 1200, y: 1200)
Coordinates:
* time (time) datetime64[ns] 1998-01-02 1998-01-10 ... 2005-12-23
* y (y) int64 0 1 2 3 4 5 6 7 ... 1193 1194 1195 1196 1197 1198 1199
* x (x) int64 0 1 2 3 4 5 6 7 ... 1193 1194 1195 1196 1197 1198 1199
Data variables:
BHR_SW (time, y, x) float64 1.0 1.0 1.0 1.0 1.0 ... 1.0 1.0 1.0 1.0 1.0
latitude (y, x) float64 40.0 40.01 40.02 40.03 ... 49.97 49.98 49.99 50.0
longitude (y, x) float64 0.0 0.0 0.0 0.0 0.0 ... 15.56 15.56 15.56 15.56
```
This is a REDUCING the spatial resolution of the variable.
What I have tried is the following:
output_ds.resample(x=200).mean()
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-54-10fbdf855a5d> in <module>()
----> 1 output_ds.resample(x=200).mean()
/home/mpim/m300690/miniconda3/envs/holaps/lib/python2.7/site-packages/xarray/core/common.pyc in resample(self, indexer, skipna, closed, label, base, keep_attrs, **indexer_kwargs)
701 group = DataArray(dim_coord, coords=dim_coord.coords,
702 dims=dim_coord.dims, name=RESAMPLE_DIM)
--> 703 grouper = pd.Grouper(freq=freq, closed=closed, label=label, base=base)
704 resampler = self._resample_cls(self, group=group, dim=dim_name,
705 grouper=grouper,
/home/mpim/m300690/miniconda3/envs/holaps/lib/python2.7/site-packages/pandas/core/resample.pyc in __init__(self, freq, closed, label, how, axis, fill_method, limit, loffset, kind, convention, base, **kwargs)
1198 .format(convention))
1199
-> 1200 freq = to_offset(freq)
1201
1202 end_types = set(['M', 'A', 'Q', 'BM', 'BA', 'BQ', 'W'])
/home/mpim/m300690/miniconda3/envs/holaps/lib/python2.7/site-packages/pandas/tseries/frequencies.pyc in to_offset(freq)
174 delta = delta + offset
175 except Exception:
--> 176 raise ValueError(libfreqs._INVALID_FREQ_ERROR.format(freq))
177
178 if delta is None:
ValueError: Invalid frequency: 200
But I get the error shown.
How can I complete this spatial resampling for x and y?
output_ds.resample(x=200, y=200).mean()
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-55-e0bfce19e037> in <module>()
----> 1 output_ds.resample(x=200, y=200).mean()
/home/mpim/m300690/miniconda3/envs/holaps/lib/python2.7/site-packages/xarray/core/common.pyc in resample(self, indexer, skipna, closed, label, base, keep_attrs, **indexer_kwargs)
679 if len(indexer) != 1:
680 raise ValueError(
--> 681 "Resampling only supported along single dimensions."
682 )
683 dim, freq = indexer.popitem()
ValueError: Resampling only supported along single dimensions.
this on the test data I have created above. On the real data read in from a netcdf file
<xarray.Dataset>
Dimensions: (time: 368, x: 1200, y: 1200)
Coordinates:
* time (time) datetime64[ns] 1998-01-02 1998-01-10 ... 2005-12-28
Dimensions without coordinates: x, y
Data variables:
latitude (y, x) float32 ...
longitude (y, x) float32 ...
Data_Mask (y, x) float32 ...
BHR_SW (time, y, x) float32 ...
Attributes:
CDI: Climate Data Interface version 1.9.5 (http://mpimet.mp...
Conventions: CF-1.4
history: Fri Dec 07 13:29:13 2018: cdo mergetime GLOBALBEDO/Glo...
content: extracted variabel BHR_SW of the original GlobAlbedo (...
metadata_profile: beam
metadata_version: 0.5
CDO: Climate Data Operators version 1.9.5 (http://mpimet.mp...
```
I have tried a similar thing:
ds.resample(x=200).mean()
/home/mpim/m300690/miniconda3/envs/holaps/lib/python2.7/site-packages/xarray/core/common.pyc in resample(self, indexer, skipna, closed, label, base, keep_attrs, **indexer_kwargs)
686 dim_coord = self[dim]
687
--> 688 if isinstance(self.indexes[dim_name], CFTimeIndex):
689 raise NotImplementedError(
690 'Resample is currently not supported along a dimension '
/home/mpim/m300690/miniconda3/envs/holaps/lib/python2.7/site-packages/xarray/core/coordinates.pyc in __getitem__(self, key)
309 if key not in self._sizes:
310 raise KeyError(key)
--> 311 return self._variables[key].to_index()
312
313 def __unicode__(self):
KeyError: 'x'
Any help very much appreciated.
Recently the coarsen method has been added to xarray and I think it's the best way for spatially downsampling, even though it's not possible to use it setting a desired final resolution and have it computed automatically. Coarsen will perform an operation (mean, max, min, etc) over non-overlapping windows and depending on the window size you set you will get your desired final resolution.
Original input data from the author:
import pandas as pd
import numpy as np
import xarray as xr
time = pd.date_range(np.datetime64('1998-01-02T00:00:00.000000000'), np.datetime64('2005-12-28T00:00:00.000000000'), freq='8D')
x = np.arange(1200)
y = np.arange(1200)
latitude = np.linspace(40,50,1200)
longitude = np.linspace(0,15.5572382,1200)
latitude, longitude = np.meshgrid(latitude, longitude)
BHR_SW = np.ones((365, 1200, 1200))
output_da = xr.DataArray(BHR_SW, coords=[time, y, x])
latitude_da = xr.DataArray(latitude, coords=[y, x])
longitude_da = xr.DataArray(longitude, coords=[y, x])
output_da = output_da.rename({'dim_0':'time','dim_1':'y','dim_2':'x'})
latitude_da = latitude_da.rename({'dim_0':'y','dim_1':'x'})
longitude_da = longitude_da.rename({'dim_0':'y','dim_1':'x'})
output_ds = output_da.to_dataset(name='BHR_SW')
output_ds = output_ds.assign({'latitude':latitude_da, 'longitude':longitude_da})
print(output_ds)
<xarray.Dataset>
Dimensions: (time: 365, x: 1200, y: 1200)
Coordinates:
* time (time) datetime64[ns] 1998-01-02 1998-01-10 ... 2005-12-23
* y (y) int64 0 1 2 3 4 5 6 7 ... 1193 1194 1195 1196 1197 1198 1199
* x (x) int64 0 1 2 3 4 5 6 7 ... 1193 1194 1195 1196 1197 1198 1199
Data variables:
BHR_SW (time, y, x) float64 1.0 1.0 1.0 1.0 1.0 ... 1.0 1.0 1.0 1.0 1.0
latitude (y, x) float64 40.0 40.01 40.02 40.03 ... 49.97 49.98 49.99 50.0
longitude (y, x) float64 0.0 0.0 0.0 0.0 0.0 ... 15.56 15.56 15.56 15.56
Coarsen method to reduce spatial resolution from 1200x1200 to 200x200, we need 6x6 windows.
output_ds.coarsen(x=6).mean().coarsen(y=6).mean()
# or output_ds.coarsen(x=6,y=6).mean()
<xarray.Dataset>
Dimensions: (time: 365, x: 200, y: 200)
Coordinates:
* time (time) datetime64[ns] 1998-01-02 1998-01-10 ... 2005-12-23
* y (y) float64 2.5 8.5 14.5 20.5 ... 1.184e+03 1.19e+03 1.196e+03
* x (x) float64 2.5 8.5 14.5 20.5 ... 1.184e+03 1.19e+03 1.196e+03
Data variables:
BHR_SW (time, y, x) float64 1.0 1.0 1.0 1.0 1.0 ... 1.0 1.0 1.0 1.0 1.0
latitude (y, x) float64 40.02 40.07 40.12 40.17 ... 49.88 49.93 49.98
longitude (y, x) float64 0.03244 0.03244 0.03244 ... 15.52 15.52 15.52
@clausmichele's answer using coarsen
is now the best way to do this. Note that coarsen now includes the ability to specify desired output coordinates.
As piman314 suggests, groupby is the only way to do this in xarray. Resample can only be used for datetime coordinates.
Since xarray currently does not handle multidimensional groupby, this has to be done in two stages:
# this results in bin centers on 100, 300, ...
reduced = (
output_ds
.groupby(((output_ds.x//200) + 0.5) * 200)
.mean(dim='x')
.groupby(((output_ds.y//200) + 0.5) * 200)
.mean(dim='y'))
If you simply want to downsample your data, you can use positional slicing:
output_ds[:, ::200, ::200]
or, using named dims:
output_ds[{'x': slice(None, None, 200), 'y': slice(None, None, 200)}]
Finally, there are other packages out there that are specifically designed for fast regridding compatible with xarray. xESMF is a good one.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With