I have a dataframe that looks like the picture showned below in 'input'.
I try to get 1 date per row (see picture below in 'desired output'). In other word, I try to do a kind of 'transpose' for each row.
Let's stipulate that the combination 'LC' and 'Prod' is a unique key.
Input
Desired output:
Info:
In my real dataset, there is some missing values in the quantity field (the colored region area). Thus, I should still be able to compute with missing values.
My try that fails
I have tried the following but it fails...
library("dplyr")
outputTest <- tbl_df(inputTest) %>%
gather(date, value, c(inputTest$LC, inputTest$Prod))
outputTest
Source:
inputTest <- structure(list(LC = structure(c(1L, 3L, 1L, 2L), .Label = c("berlin",
"munchen", "stutgart"), class = "factor"), Prod = structure(c(1L,
2L, 2L, 1L), .Label = c("(STORE1)400096", "STORE2_00154"), class = "factor"),
PROD_TYPE = structure(c(1L, 2L, 2L, 1L), .Label = c("STORE1",
"STORE2"), class = "factor"), X2015.6.29 = c(20.08, 8.91,
11.38, 15.42), X2015.7.6 = c(20.66, 8.49, 10.91, 15.57),
X2015.7.13 = c(19.02, 8.55, 10.89, 14.6), X2015.7.20 = c(18.6,
7.95, 10.58, 14.31)), .Names = c("LC", "Prod", "PROD_TYPE",
"2015.6.29", "2015.7.6", "2015.7.13", "2015.7.20"), class = "data.frame", row.names = c(NA,
-4L))
Using gather, you can specify the columns you do not want to gather with the negation operator '-' (minus sign). The key in your case is the date, the value is the value, and LC, Prod, and PROD_TYPE serve as identifiers.
output <- as.data.frame(inputTest) %>%
tidyr::gather(key = Date, value = Value, -LC, -Prod, -PROD_TYPE)
This yields:
LC Prod PROD_TYPE Date Value
1 berlin (STORE1)400096 STORE1 2015.6.29 20.08
2 stutgart STORE2_00154 STORE2 2015.6.29 8.91
3 berlin STORE2_00154 STORE2 2015.6.29 11.38
4 munchen (STORE1)400096 STORE1 2015.6.29 15.42
5 berlin (STORE1)400096 STORE1 2015.7.6 20.66
6 stutgart STORE2_00154 STORE2 2015.7.6 8.49
7 berlin STORE2_00154 STORE2 2015.7.6 10.91
8 munchen (STORE1)400096 STORE1 2015.7.6 15.57
9 berlin (STORE1)400096 STORE1 2015.7.13 19.02
10 stutgart STORE2_00154 STORE2 2015.7.13 8.55
11 berlin STORE2_00154 STORE2 2015.7.13 10.89
12 munchen (STORE1)400096 STORE1 2015.7.13 14.60
13 berlin (STORE1)400096 STORE1 2015.7.20 18.60
14 stutgart STORE2_00154 STORE2 2015.7.20 7.95
15 berlin STORE2_00154 STORE2 2015.7.20 10.58
16 munchen (STORE1)400096 STORE1 2015.7.20 14.31
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With