I have a superclass that has a retrieve() method, and its subclasses each implement their own retrieve() method. I'd like every retrieve() method to be decorated to cache the return value when it receive the same args, without having to decorate the method in every subclass.
Decorators don't seem to be inherited. I could probably call the superclass's method which would in turn set the cache, but currently my superclass raises a NotImplemented exception, which I like.
import json
import operator
from cachetools import cachedmethod, TTLCache
def simple_decorator(func):
def wrapper(*args, **kwargs):
#check cache
print("simple decorator")
func(*args, **kwargs)
#set cache
return wrapper
class AbstractInput(object):
def __init__(self, cacheparams = {'maxsize': 10, 'ttl': 300}):
self.cache = TTLCache(**cacheparams)
super().__init__()
@simple_decorator
def retrieve(self, params):
print("AbstractInput retrieve")
raise NotImplementedError("AbstractInput inheritors must implement retrieve() method")
class JsonInput(AbstractInput):
def retrieve(self, params):
print("JsonInput retrieve")
return json.dumps(params)
class SillyJsonInput(JsonInput):
def retrieve(self, params):
print("SillyJsonInput retrieve")
params["silly"] = True
return json.dumps(params)
Actual results:
>>> ai.retrieve(params)
ai.retrieve(params)
simple decorator
AbstractInput retrieve
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<string>", line 8, in wrapper
File "<string>", line 22, in retrieve
NotImplementedError: AbstractInput inheritors must implement retrieve() method
>>> ji.retrieve(params)
ji.retrieve(params)
JsonInput retrieve
'{"happy": "go lucky", "angry": "as a wasp"}'
Desired results:
>>> ai.retrieve(params)
ai.retrieve(params)
simple decorator
AbstractInput retrieve
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<string>", line 8, in wrapper
File "<string>", line 22, in retrieve
NotImplementedError: AbstractInput inheritors must implement retrieve() method
>>> ji.retrieve(params)
simple decorator
ji.retrieve(params)
JsonInput retrieve
'{"happy": "go lucky", "angry": "as a wasp"}'
A subclass inherits everything from its superclass, which is referred to as inheritance in the object-orientation methodology and object-oriented programming. By inheritance, the superclass's attributes will not repeat in any of its subclasses.
Subclass methods can call superclass methods if both methods have the same name. From the subclass, reference the method name and superclass name with the @ symbol.
In inheritance, a class (usually called superclass) is inherited by another class (usually called subclass). The subclass adds some attributes to superclass. Below is a sample Python program to show how inheritance is implemented in Python. # A Python program to demonstrate inheritance. # Base or Super class.
Inheritance allows us to define a class that inherits all the methods and properties from another class. Parent class is the class being inherited from, also called base class.
Yes, the use of a metaclass to force a decorator on an specific method, as you put in your own answer is correct. With a few changes, it can be made so that the method to be decorated is not fixed - for example, an attribute set in the decorated function can be used as a "mark" that such a decorator should be forced upon overriding methods.
Besides that, since Python 3.6, there is a new class level mechanism - the special method __init_subclass__
, which has the specific objective of diminishing the need for metaclasses. Metaclasses can be complicated, and if your class hierarchy needs to combine more than one metaclass, you may be in for some headache.
The __init_subclass__
method is placed on the base class, and it is called once each time a child class is created. The wrapping logic can be put there.
Basically, you can just modify your decorator to put the mark I mentioned above, and add this class in your inheritance hierarchy - it can be put as mixin class in multiple inheritance, so it can be reused for various class-trees, if needed:
def simple_decorator(func):
def wrapper(*args, **kwargs):
print("check cache")
rt = func(*args, **kwargs)
print("set cache")
return rt
wrapper.inherit_decorator = simple_decorator
return wrapper
class InheritDecoratorsMixin:
def __init_subclass__(cls, *args, **kwargs):
super().__init_subclass__(*args, **kwargs)
decorator_registry = getattr(cls, "_decorator_registry", {}).copy()
cls._decorator_registry = decorator_registry
# Check for decorated objects in the mixin itself- optional:
for name, obj in __class__.__dict__.items():
if getattr(obj, "inherit_decorator", False) and not name in decorator_registry:
decorator_registry[name] = obj.inherit_decorator
# annotate newly decorated methods in the current subclass:
for name, obj in cls.__dict__.items():
if getattr(obj, "inherit_decorator", False) and not name in decorator_registry:
decorator_registry[name] = obj.inherit_decorator
# finally, decorate all methods anottated in the registry:
for name, decorator in decorator_registry.items():
if name in cls.__dict__ and getattr(getattr(cls, name), "inherit_decorator", None) != decorator:
setattr(cls, name, decorator(cls.__dict__[name]))
So, that is it - each new subclass will have its own _decorator_registry
attribute, where the name of the decorated methods in all ancestors, along with which decorator to apply is annotated.
If the decorator should be used one single time for the method, and not be repeated when the overridden method performs the super()
call for its ancestors (not the case when you are decorating for cache, since the super-methods won't be called) that gets trickier - but can be done.
However, it is tricky to do - as the decorator instances in the superclasses would be other instances than the decorator on the subclass - one way to pass information to then that the "decorator code for this method is already run in this chain call" is to use an instance-level marker - which should be a thread-local variable if the code is to support parallelism.
All this checking will result in quite some complicated boilerplate to put into what could be a simple decorator - so we can create a "decorator" for the "decorators" that we want to run a single time. In other wors, decoratos decorated with childmost
bellow will run only on the "childmost" class, but not on the corresponding methods in the superclasses when they call super()
import threading
def childmost(decorator_func):
def inheritable_decorator_that_runs_once(func):
decorated_func = decorator_func(func)
name = func.__name__
def wrapper(self, *args, **kw):
if not hasattr(self, f"_running_{name}"):
setattr(self, f"_running_{name}", threading.local())
running_registry = getattr(self, f"_running_{name}")
try:
if not getattr(running_registry, "running", False):
running_registry.running = True
rt = decorated_func(self, *args, **kw)
else:
rt = func(self, *args, **kw)
finally:
running_registry.running = False
return rt
wrapper.inherit_decorator = inheritable_decorator_that_runs_once
return wrapper
return inheritable_decorator_that_runs_once
Example using the first listing:
class A: pass
class B(A, InheritDecoratorsMixin):
@simple_decorator
def method(self):
print(__class__, "method called")
class C(B):
def method(self):
print(__class__, "method called")
super().method()
And after pasting the listing-1 and these A=B-C class in the interpreter, the result is this:
In [9]: C().method()
check cache
<class '__main__.C'> method called
check cache
<class '__main__.B'> method called
set cache
set cache
(the "A" class here is entirely optional and can be left out)
Example using the second listing:
# Decorating the same decorator above:
@childmost
def simple_decorator2(func):
def wrapper(*args, **kwargs):
print("check cache")
rt = func(*args, **kwargs)
print("set cache")
return rt
return wrapper
class D: pass
class E(D, InheritDecoratorsMixin):
@simple_decorator2
def method(self):
print(__class__, "method called")
class F(E):
def method(self):
print(__class__, "method called")
super().method()
And the result:
In [19]: F().method()
check cache
<class '__main__.F'> method called
<class '__main__.E'> method called
set cache
OK, it seems that I can "decorate" a method in a superclass and have the subclasses also inherit that decoration, even if the method is overwritten in the subclass, using metaclasses. In this case, I'm decorating all "retrieve" methods in AbstractInput and its subclasses with simple_decorator using a metaclass named CacheRetrieval.
def simple_decorator(func):
def wrapper(*args, **kwargs):
print("check cache")
rt = func(*args, **kwargs)
print("set cache")
return rt
return wrapper
class CacheRetrieval(type):
def __new__(cls, name, bases, attr):
# Replace each function with
# a print statement of the function name
# followed by running the computation with the provided args and returning the computation result
attr["retrieve"] = simple_decorator(attr["retrieve"])
return super(CacheRetrieval, cls).__new__(cls, name, bases, attr)
class AbstractInput(object, metaclass= CacheRetrieval):
def __init__(self, cacheparams = {'maxsize': 10, 'ttl': 300}):
self.cache = TTLCache(**cacheparams)
super().__init__()
def retrieve(self, params):
print("AbstractInput retrieve")
raise NotImplementedError("DataInput must implement retrieve() method")
class JsonInput(AbstractInput):
def retrieve(self, params):
print("JsonInput retrieve")
return json.dumps(params)
class SillyJsonInput(JsonInput):
def retrieve(self, params):
print("SillyJsonInput retrieve")
params["silly"] = True
return json.dumps(params)
I was helped by this page: https://stackabuse.com/python-metaclasses-and-metaprogramming/
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With