I have multi variate time series data, want to detect the anomalies with isolation forest algorithm. want to get best parameters from gridSearchCV, here is the code snippet of gridSearch CV.
input data set loaded with below snippet.
df = pd.read_csv("train.csv")
df.drop(['dataTimestamp','Anomaly'], inplace=True, axis=1)
X_train = df
y_train = df1[['Anomaly']] ( Anomaly column is labelled data).
define the parameters for Isolation Forest.
clf = IsolationForest(random_state=47, behaviour='new', score="accuracy")
param_grid = {'n_estimators': list(range(100, 800, 5)), 'max_samples': list(range(100, 500, 5)), 'contamination': [0.1, 0.2, 0.3, 0.4, 0.5], 'max_features': [5,10,15], 'bootstrap': [True, False], 'n_jobs': [5, 10, 20, 30]}
f1sc = make_scorer(f1_score)
grid_dt_estimator = model_selection.GridSearchCV(clf, param_grid,scoring=f1sc, refit=True,cv=10, return_train_score=True)
grid_dt_estimator.fit(X_train, y_train)
after executing the fit , got the below error.
ValueError: Target is multiclass but average='binary'. Please choose another average setting.
Can some one guide me what is this about, tried average='weight', but still no luck, anything am doing wrong here. please let me know how to get F-score as well.
You incur in this error because you didn't set the parameter average
when transforming the f1_score into a scorer. In fact, as detailed in the documentation:
average : string, [None, ‘binary’ (default), ‘micro’, ‘macro’, ‘samples’, ‘weighted’] This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned.
The consequence is that the scorer returns multiple scores for each class in your classification problem, instead of a single measure. The solution is to declare one of the possible values of the average
parameter for f1_score
, depending on your needs. I therefore refactored the code you provided as an example in order to provide a possible solution to your problem:
from sklearn.ensemble import IsolationForest
from sklearn.metrics import make_scorer, f1_score
from sklearn import model_selection
from sklearn.datasets import make_classification
X_train, y_train = make_classification(n_samples=500,
n_classes=2)
clf = IsolationForest(random_state=47, behaviour='new')
param_grid = {'n_estimators': list(range(100, 800, 5)),
'max_samples': list(range(100, 500, 5)),
'contamination': [0.1, 0.2, 0.3, 0.4, 0.5],
'max_features': [5,10,15],
'bootstrap': [True, False],
'n_jobs': [5, 10, 20, 30]}
f1sc = make_scorer(f1_score(average='micro'))
grid_dt_estimator = model_selection.GridSearchCV(clf,
param_grid,
scoring=f1sc,
refit=True,
cv=10,
return_train_score=True)
grid_dt_estimator.fit(X_train, y_train)
Update make_scorer with this to get it working.
make_scorer(f1_score, average='micro')
Parameters you tune are not all necessary.
For example:contamination
is the rate for abnomaly, you can determin the best value after you fitted a model by tune the threshold on model.score_samples
n_jobs
is the CPU core you used.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With