You can insert a list of values into a cell in Pandas DataFrame using DataFrame.at() , DataFrame. iat() , and DataFrame. loc() methods.
List with DataFrame rows as items. As mentioned above, you can quickly get a list from a dataframe using the tolist() function. In the above example, df. values returns the numpy representation of the dataframe df which is then converted to a list using the tolist() function.
Since set_value
has been deprecated since version 0.21.0, you should now use at
. It can insert a list into a cell without raising a ValueError
as loc
does. I think this is because at
always refers to a single value, while loc
can refer to values as well as rows and columns.
df = pd.DataFrame(data={'A': [1, 2, 3], 'B': ['x', 'y', 'z']})
df.at[1, 'B'] = ['m', 'n']
df =
A B
0 1 x
1 2 [m, n]
2 3 z
You also need to make sure the column you are inserting into has dtype=object
. For example
>>> df = pd.DataFrame(data={'A': [1, 2, 3], 'B': [1,2,3]})
>>> df.dtypes
A int64
B int64
dtype: object
>>> df.at[1, 'B'] = [1, 2, 3]
ValueError: setting an array element with a sequence
>>> df['B'] = df['B'].astype('object')
>>> df.at[1, 'B'] = [1, 2, 3]
>>> df
A B
0 1 1
1 2 [1, 2, 3]
2 3 3
set_value
has been deprecated. You can now use DataFrame.at
to set by label, and DataFrame.iat
to set by integer position.
at
/iat
# Setup
df = pd.DataFrame({'A': [12, 23], 'B': [['a', 'b'], ['c', 'd']]})
df
A B
0 12 [a, b]
1 23 [c, d]
df.dtypes
A int64
B object
dtype: object
If you want to set a value in second row of the "B" to some new list, use DataFrane.at
:
df.at[1, 'B'] = ['m', 'n']
df
A B
0 12 [a, b]
1 23 [m, n]
You can also set by integer position using DataFrame.iat
df.iat[1, df.columns.get_loc('B')] = ['m', 'n']
df
A B
0 12 [a, b]
1 23 [m, n]
ValueError: setting an array element with a sequence
?I'll try to reproduce this with:
df
A B
0 12 NaN
1 23 NaN
df.dtypes
A int64
B float64
dtype: object
df.at[1, 'B'] = ['m', 'n']
# ValueError: setting an array element with a sequence.
This is because of a your object is of float64
dtype, whereas lists are object
s, so there's a mismatch there. What you would have to do in this situation is to convert the column to object first.
df['B'] = df['B'].astype(object)
df.dtypes
A int64
B object
dtype: object
Then, it works:
df.at[1, 'B'] = ['m', 'n']
df
A B
0 12 NaN
1 23 [m, n]
Even more wacky, I've found you can hack through DataFrame.loc
to achieve something similar if you pass nested lists.
df.loc[1, 'B'] = [['m'], ['n'], ['o'], ['p']]
df
A B
0 12 [a, b]
1 23 [m, n, o, p]
You can read more about why this works here.
df3.set_value(1, 'B', abc)
works for any dataframe. Take care of the data type of column 'B'. Eg. a list can not be inserted into a float column, at that case df['B'] = df['B'].astype(object)
can help.
Quick work around
Simply enclose the list within a new list, as done for col2 in the data frame below. The reason it works is that python takes the outer list (of lists) and converts it into a column as if it were containing normal scalar items, which is lists in our case and not normal scalars.
mydict={'col1':[1,2,3],'col2':[[1, 4], [2, 5], [3, 6]]}
data=pd.DataFrame(mydict)
data
col1 col2
0 1 [1, 4]
1 2 [2, 5]
2 3 [3, 6]
Also getting
ValueError: Must have equal len keys and value when setting with an iterable
,
using .at rather than .loc did not make any difference in my case, but enforcing the datatype of the dataframe column did the trick:
df['B'] = df['B'].astype(object)
Then I could set lists, numpy array and all sorts of things as single cell values in my dataframes.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With