JSON is a lightweight format and is much faster than Pickling. There is always a security risk with Pickle. Unpickling data from unknown sources should be avoided as it may contain malicious or erroneous data. There are no loopholes in security using JSON, and it is free from security threats.
An alternative is cPickle. It is nearly identical to pickle , but written in C, which makes it up to 1000 times faster. For small files, however, you won't notice the difference in speed. Both produce the same data streams, which means that Pickle and cPickle can use the same files.
Pickle is unsafe because it constructs arbitrary Python objects by invoking arbitrary functions. However, this is also gives it the power to serialize almost any Python object, without any boilerplate or even white-/black-listing (in the common case).
Pickling is one form of serialising. Serialisation in a generic term, also applicable to JSON, XML, and other formats.
I prefer JSON over pickle for my serialization. Unpickling can run arbitrary code, and using pickle
to transfer data between programs or store data between sessions is a security hole. JSON does not introduce a security hole and is standardized, so the data can be accessed by programs in different languages if you ever need to.
If you do not have any interoperability requirements (e.g. you are just going to use the data with Python) and a binary format is fine, go with cPickle which gives you really fast Python object serialization.
If you want interoperability or you want a text format to store your data, go with JSON (or some other appropriate format depending on your constraints).
You might also find this interesting, with some charts to compare: http://kovshenin.com/archives/pickle-vs-json-which-is-faster/
If you are primarily concerned with speed and space, use cPickle because cPickle is faster than JSON.
If you are more concerned with interoperability, security, and/or human readability, then use JSON.
The tests results referenced in other answers were recorded in 2010, and the updated tests in 2016 with cPickle protocol 2 show:
Reproduce this yourself with this gist, which is based on the Konstantin's benchmark referenced in other answers, but using cPickle with protocol 2 instead of pickle, and using json instead of simplejson (since json is faster than simplejson), e.g.
wget https://gist.github.com/jdimatteo/af317ef24ccf1b3fa91f4399902bb534/raw/03e8dbab11b5605bc572bc117c8ac34cfa959a70/pickle_vs_json.py
python pickle_vs_json.py
Results with python 2.7 on a decent 2015 Xeon processor:
Dir Entries Method Time Length
dump 10 JSON 0.017 1484510
load 10 JSON 0.375 -
dump 10 Pickle 0.011 1428790
load 10 Pickle 0.098 -
dump 20 JSON 0.036 2969020
load 20 JSON 1.498 -
dump 20 Pickle 0.022 2857580
load 20 Pickle 0.394 -
dump 50 JSON 0.079 7422550
load 50 JSON 9.485 -
dump 50 Pickle 0.055 7143950
load 50 Pickle 2.518 -
dump 100 JSON 0.165 14845100
load 100 JSON 37.730 -
dump 100 Pickle 0.107 14287900
load 100 Pickle 9.907 -
Python 3.4 with pickle protocol 3 is even faster.
JSON or pickle? How about JSON and pickle!
You can use jsonpickle
. It easy to use and the file on disk is readable because it's JSON.
See jsonpickle Documentation
I have tried several methods and found out that using cPickle with setting the protocol argument of the dumps method as: cPickle.dumps(obj, protocol=cPickle.HIGHEST_PROTOCOL)
is the fastest dump method.
import msgpack
import json
import pickle
import timeit
import cPickle
import numpy as np
num_tests = 10
obj = np.random.normal(0.5, 1, [240, 320, 3])
command = 'pickle.dumps(obj)'
setup = 'from __main__ import pickle, obj'
result = timeit.timeit(command, setup=setup, number=num_tests)
print("pickle: %f seconds" % result)
command = 'cPickle.dumps(obj)'
setup = 'from __main__ import cPickle, obj'
result = timeit.timeit(command, setup=setup, number=num_tests)
print("cPickle: %f seconds" % result)
command = 'cPickle.dumps(obj, protocol=cPickle.HIGHEST_PROTOCOL)'
setup = 'from __main__ import cPickle, obj'
result = timeit.timeit(command, setup=setup, number=num_tests)
print("cPickle highest: %f seconds" % result)
command = 'json.dumps(obj.tolist())'
setup = 'from __main__ import json, obj'
result = timeit.timeit(command, setup=setup, number=num_tests)
print("json: %f seconds" % result)
command = 'msgpack.packb(obj.tolist())'
setup = 'from __main__ import msgpack, obj'
result = timeit.timeit(command, setup=setup, number=num_tests)
print("msgpack: %f seconds" % result)
Output:
pickle : 0.847938 seconds
cPickle : 0.810384 seconds
cPickle highest: 0.004283 seconds
json : 1.769215 seconds
msgpack : 0.270886 seconds
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With