They are not iterable, but they are accepted. You can also pass int s to numpy. array() , so they are array-like.
Numpy for loop is used for iterating through numpy arrays of different dimensions, which is created using the python numpy library and using the for loop, multiple operations can be done going through each element in the array by one.
I think you're looking for the ndenumerate.
>>> a =numpy.array([[1,2],[3,4],[5,6]])
>>> for (x,y), value in numpy.ndenumerate(a):
... print x,y
...
0 0
0 1
1 0
1 1
2 0
2 1
Regarding the performance. It is a bit slower than a list comprehension.
X = np.zeros((100, 100, 100))
%timeit list([((i,j,k), X[i,j,k]) for i in range(X.shape[0]) for j in range(X.shape[1]) for k in range(X.shape[2])])
1 loop, best of 3: 376 ms per loop
%timeit list(np.ndenumerate(X))
1 loop, best of 3: 570 ms per loop
If you are worried about the performance you could optimise a bit further by looking at the implementation of ndenumerate
, which does 2 things, converting to an array and looping. If you know you have an array, you can call the .coords
attribute of the flat iterator.
a = X.flat
%timeit list([(a.coords, x) for x in a.flat])
1 loop, best of 3: 305 ms per loop
If you only need the indices, you could try numpy.ndindex
:
>>> a = numpy.arange(9).reshape(3, 3)
>>> [(x, y) for x, y in numpy.ndindex(a.shape)]
[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)]
see nditer
import numpy as np
Y = np.array([3,4,5,6])
for y in np.nditer(Y, op_flags=['readwrite']):
y += 3
Y == np.array([6, 7, 8, 9])
y = 3
would not work, usey *= 0
andy += 3
instead.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With