You can get the count distinct values (equivalent to SQL count(distinct) ) in pandas using DataFrame. groupby(), nunique() , DataFrame. agg(), DataFrame.
What are pandas aggregate functions? Similar to SQL, pandas also supports multiple aggregate functions that perform a calculation on a set of values (grouped data) and return a single value. An aggregate is a function where the values of multiple rows are grouped together to form a single summary value.
How about either of:
>>> df
date duration user_id
0 2013-04-01 30 0001
1 2013-04-01 15 0001
2 2013-04-01 20 0002
3 2013-04-02 15 0002
4 2013-04-02 30 0002
>>> df.groupby("date").agg({"duration": np.sum, "user_id": pd.Series.nunique})
duration user_id
date
2013-04-01 65 2
2013-04-02 45 1
>>> df.groupby("date").agg({"duration": np.sum, "user_id": lambda x: x.nunique()})
duration user_id
date
2013-04-01 65 2
2013-04-02 45 1
'nunique' is an option for .agg() since pandas 0.20.0, so:
df.groupby('date').agg({'duration': 'sum', 'user_id': 'nunique'})
Just adding to the answers already given, the solution using the string "nunique"
seems much faster, tested here on ~21M rows dataframe, then grouped to ~2M
%time _=g.agg({"id": lambda x: x.nunique()})
CPU times: user 3min 3s, sys: 2.94 s, total: 3min 6s
Wall time: 3min 20s
%time _=g.agg({"id": pd.Series.nunique})
CPU times: user 3min 2s, sys: 2.44 s, total: 3min 4s
Wall time: 3min 18s
%time _=g.agg({"id": "nunique"})
CPU times: user 14 s, sys: 4.76 s, total: 18.8 s
Wall time: 24.4 s
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With