I am running a MapReduce job on Amazon EMR which creates 40 output files, about 130MB each. The 9 last reduce tasks fail with a "No space left on device" exception. Is this a matter of a false configuration of the cluster? The job runs without a problem with fewer input files, fewer output files and fewer reducers. Any help will be much appreciated. Thanks! Full stacktrace below:
Error: java.io.IOException: No space left on device
at java.io.FileOutputStream.writeBytes(Native Method)
at java.io.FileOutputStream.write(FileOutputStream.java:345)
at java.io.BufferedOutputStream.write(BufferedOutputStream.java:122)
at java.security.DigestOutputStream.write(DigestOutputStream.java:148)
at com.amazon.ws.emr.hadoop.fs.s3n.MultipartUploadOutputStream.write(MultipartUploadOutputStream.java:135)
at org.apache.hadoop.fs.FSDataOutputStream$PositionCache.write(FSDataOutputStream.java:60)
at java.io.DataOutputStream.write(DataOutputStream.java:107)
at org.apache.hadoop.io.compress.CompressorStream.compress(CompressorStream.java:83)
at org.apache.hadoop.io.compress.CompressorStream.finish(CompressorStream.java:92)
at org.apache.hadoop.io.compress.CompressorStream.close(CompressorStream.java:105)
at java.io.FilterOutputStream.close(FilterOutputStream.java:160)
at org.apache.hadoop.mapreduce.lib.output.TextOutputFormat$LineRecordWriter.close(TextOutputFormat.java:111)
at org.apache.hadoop.mapred.ReduceTask$NewTrackingRecordWriter.close(ReduceTask.java:558)
at org.apache.hadoop.mapred.ReduceTask.runNewReducer(ReduceTask.java:637)
at org.apache.hadoop.mapred.ReduceTask.run(ReduceTask.java:390)
at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:167)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:415)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1548)
at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:162)
EDIT
I did some further attempts but unfortunately I am still getting errors. I thought I might not have enough memory on my instances because of the replication factor mentioned in the comment below, so I tried with large instead of medium instances that I was experimenting with until now. But I got another exception this time:
Error: java.io.IOException: Error closing multipart upload
at com.amazon.ws.emr.hadoop.fs.s3n.MultipartUploadOutputStream.uploadMultiParts(MultipartUploadOutputStream.java:207)
at com.amazon.ws.emr.hadoop.fs.s3n.MultipartUploadOutputStream.close(MultipartUploadOutputStream.java:222)
at org.apache.hadoop.fs.FSDataOutputStream$PositionCache.close(FSDataOutputStream.java:72)
at org.apache.hadoop.fs.FSDataOutputStream.close(FSDataOutputStream.java:105)
at org.apache.hadoop.io.compress.CompressorStream.close(CompressorStream.java:106)
at java.io.FilterOutputStream.close(FilterOutputStream.java:160)
at org.apache.hadoop.mapreduce.lib.output.TextOutputFormat$LineRecordWriter.close(TextOutputFormat.java:111)
at org.apache.hadoop.mapred.ReduceTask$NewTrackingRecordWriter.close(ReduceTask.java:558)
at org.apache.hadoop.mapred.ReduceTask.runNewReducer(ReduceTask.java:637)
at org.apache.hadoop.mapred.ReduceTask.run(ReduceTask.java:390)
at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:167)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:415)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1548)
at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:162)
Caused by: java.util.concurrent.ExecutionException: com.amazonaws.services.s3.model.AmazonS3Exception: The Content-MD5 you specified did not match what we received. (Service: Amazon S3; Status Code: 400; Error Code: BadDigest;
at java.util.concurrent.FutureTask.report(FutureTask.java:122)
at java.util.concurrent.FutureTask.get(FutureTask.java:188)
The result is that only about 70% of the expected output files are produced, the remaining reduce tasks fail. Then I tried uploading a large file to my S3 bucket in case there wasn't enough memory there but that doesn't seem to be the problem.
I am using the aws Elastic MapReduce service. Any ideas?
The problem means that there is no space to store the output (or temporary output) of your MapReduce job.
Some things to check are:
hadoop dfs -ls /
command to check the files stored on HDFS. (In case you use a Trash, make sure you empty it, too.)setCompressMapOutput(true);
It could be an issue that some of your reducers output a significantly larger amount of data than others, so check your code, too.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With