What is memmove()? memmove() is similar to memcpy() as it also copies data from a source to destination. memcpy() leads to problems when source and destination addresses overlap as memcpy() simply copies data one by one from one location to another.
"memcpy is more efficient than memmove." In your case, you most probably are not doing the exact same thing while you run the two functions. In general, USE memmove only if you have to. USE it when there is a very reasonable chance that the source and destination regions are over-lapping.
The memcpy copy function shows undefined behavior if the memory regions pointed to by the source and destination pointers overlap. The memmove function has the defined behavior in case of overlapping. So whenever in doubt, it is safer to use memmove in place of memcpy.
memcpy() copies from one place to another. memset() just sets all pieces of memory to the same.
I'm not entirely surprised that your example exhibits no strange behaviour. Try copying str1
to str1+2
instead and see what happens then. (May not actually make a difference, depends on compiler/libraries.)
In general, memcpy is implemented in a simple (but fast) manner. Simplistically, it just loops over the data (in order), copying from one location to the other. This can result in the source being overwritten while it's being read.
Memmove does more work to ensure it handles the overlap correctly.
EDIT:
(Unfortunately, I can't find decent examples, but these will do). Contrast the memcpy and memmove implementations shown here. memcpy just loops, while memmove performs a test to determine which direction to loop in to avoid corrupting the data. These implementations are rather simple. Most high-performance implementations are more complicated (involving copying word-size blocks at a time rather than bytes).
The memory in memcpy
cannot overlap or you risk undefined behaviour, while the memory in memmove
can overlap.
char a[16];
char b[16];
memcpy(a,b,16); // valid
memmove(a,b,16); // Also valid, but slower than memcpy.
memcpy(&a[0], &a[1],10); // Not valid since it overlaps.
memmove(&a[0], &a[1],10); // valid.
Some implementations of memcpy might still work for overlapping inputs but you cannot count of that behaviour. While memmove must allow for overlapping.
Just because memcpy
doesn't have to deal with overlapping regions, doesn't mean it doesn't deal with them correctly. The call with overlapping regions produces undefined behavior. Undefined behavior can work entirely as you expect on one platform; that doesn't mean it's correct or valid.
Both memcpy and memove do similar things.
But to sight out one difference:
#include <memory.h>
#include <string.h>
#include <stdio.h>
char str1[7] = "abcdef";
int main()
{
printf( "The string: %s\n", str1 );
memcpy( (str1+6), str1, 10 );
printf( "New string: %s\n", str1 );
strcpy_s( str1, sizeof(str1), "aabbcc" ); // reset string
printf("\nstr1: %s\n", str1);
printf( "The string: %s\n", str1 );
memmove( (str1+6), str1, 10 );
printf( "New string: %s\n", str1 );
}
gives:
The string: abcdef
New string: abcdefabcdefabcd
The string: abcdef
New string: abcdefabcdef
Your demo didn't expose memcpy drawbacks because of "bad" compiler, it does you a favor in Debug version. A release version, however, gives you the same output, but because of optimization.
memcpy(str1 + 2, str1, 4);
00241013 mov eax,dword ptr [str1 (243018h)] // load 4 bytes from source string
printf("New string: %s\n", str1);
00241018 push offset str1 (243018h)
0024101D push offset string "New string: %s\n" (242104h)
00241022 mov dword ptr [str1+2 (24301Ah)],eax // put 4 bytes to destination
00241027 call esi
The register %eax
here plays as a temporary storage, which "elegantly" fixes overlap issue.
The drawback emerges when copying 6 bytes, well, at least part of it.
char str1[9] = "aabbccdd";
int main( void )
{
printf("The string: %s\n", str1);
memcpy(str1 + 2, str1, 6);
printf("New string: %s\n", str1);
strcpy_s(str1, sizeof(str1), "aabbccdd"); // reset string
printf("The string: %s\n", str1);
memmove(str1 + 2, str1, 6);
printf("New string: %s\n", str1);
}
Output:
The string: aabbccdd
New string: aaaabbbb
The string: aabbccdd
New string: aaaabbcc
Looks weird, it's caused by optimization, too.
memcpy(str1 + 2, str1, 6);
00341013 mov eax,dword ptr [str1 (343018h)]
00341018 mov dword ptr [str1+2 (34301Ah)],eax // put 4 bytes to destination, earlier than the above example
0034101D mov cx,word ptr [str1+4 (34301Ch)] // HA, new register! Holding a word, which is exactly the left 2 bytes (after 4 bytes loaded to %eax)
printf("New string: %s\n", str1);
00341024 push offset str1 (343018h)
00341029 push offset string "New string: %s\n" (342104h)
0034102E mov word ptr [str1+6 (34301Eh)],cx // Again, pulling the stored word back from the new register
00341035 call esi
This is why I always choose memmove
when trying to copy 2 overlapped memory blocks.
The difference between memcpy
and memmove
is that
in memmove
, the source memory of specified size is copied into buffer and then moved to destination. So if the memory is overlapping, there are no side effects.
in case of memcpy()
, there is no extra buffer taken for source memory. The copying is done directly on the memory so that when there is memory overlap, we get unexpected results.
These can be observed by the following code:
//include string.h, stdio.h, stdlib.h
int main(){
char a[]="hare rama hare rama";
char b[]="hare rama hare rama";
memmove(a+5,a,20);
puts(a);
memcpy(b+5,b,20);
puts(b);
}
Output is:
hare hare rama hare rama
hare hare hare hare hare hare rama hare rama
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With