In all the modern C++ compilers I've worked with, the following is legal:
std::array<float, 4> a = {1, 2, 3, 4};
I'm trying to make my own class that has similar construction semantics, but I'm running into an annoying problem. Consider the following attempt:
#include <array>
#include <cstddef>
template<std::size_t n>
class float_vec
{
private:
std::array<float, n> underlying_array;
public:
template<typename... Types>
float_vec(Types... args)
: underlying_array{{args...}}
{
}
};
int main()
{
float_vec<4> v = {1, 2, 3, 4}; // error here
}
When using int literals like above, the compiler complains it can't implicitly convert int
to float
. I think it works in the std::array
example, though, because the values given are compile-time constants known to be within the domain of float
. Here, on the other hand, the variadic template uses int
for the parameter types and the conversion happens within the constructor's initializer list where the values aren't known at compile-time.
I don't want to do an explicit cast in the constructor since that would then allow for all numeric values even if they can't be represented by float
.
The only way I can think of to get what I want is to somehow have a variable number of parameters, but of a specific type (in this case, I'd want float
). I'm aware of std::initializer_list
, but I'd like to be able to enforce the number of parameters at compile time as well.
Any ideas? Is what I want even possible with C++11? Anything new proposed for C++14 that will solve this?
A little trick is to use constructor inheritance. Just make your class derive from another class which has a pack of the parameters you want.
template <class T, std::size_t N, class Seq = repeat_types<N, T>>
struct _array_impl;
template <class T, std::size_t N, class... Seq>
struct _array_impl<T, N, type_sequence<Seq...>>
{
_array_impl(Seq... elements) : _data{elements...} {}
const T& operator[](std::size_t i) const { return _data[i]; }
T _data[N];
};
template <class T, std::size_t N>
struct array : _array_impl<T, N>
{
using _array_impl<T, N>::_array_impl;
};
int main() {
array<float, 4> a {1, 2, 3, 4};
for (int i = 0; i < 4; i++)
std::cout << a[i] << std::endl;
return 0;
}
Here is a sample implementation of the repeat_types utility. This sample uses logarithmic template recursion, which is a little less intuitive to implement than with linear recursion.
template <class... T>
struct type_sequence
{
static constexpr inline std::size_t size() noexcept { return sizeof...(T); }
};
template <class, class>
struct _concatenate_sequences_impl;
template <class... T, class... U>
struct _concatenate_sequences_impl<type_sequence<T...>, type_sequence<U...>>
{ using type = type_sequence<T..., U...>; };
template <class T, class U>
using concatenate_sequences = typename _concatenate_sequences_impl<T, U>::type;
template <std::size_t N, class T>
struct _repeat_sequence_impl
{ using type = concatenate_sequences<
typename _repeat_sequence_impl<N/2, T>::type,
typename _repeat_sequence_impl<N - N/2, T>::type>; };
template <class T>
struct _repeat_sequence_impl<1, T>
{ using type = T; };
template <class... T>
struct _repeat_sequence_impl<0, type_sequence<T...>>
{ using type = type_sequence<>; };
template <std::size_t N, class... T>
using repeat_types = typename _repeat_sequence_impl<N, type_sequence<T...>>::type;
First of what you are seeing is the default aggregate initialization. It has been around since the earliest K&R C. If your type is an aggregate, it supports aggregate initialization already. Also, your example will most likely compile, but the correct way to initialize it is std::array<int, 3> x ={{1, 2, 3}};
(note the double braces).
What has been added in C++11 is the initializer_list construct which requires a bit of compiler magic to be implemented.
So, what you can do now is add constructors and assignment operators that accept a value of std::initializer_list
and this will offer the same syntax for your type.
Example:
#include <initializer_list>
struct X {
X(std::initializer_list<int>) {
// do stuff
}
};
int main()
{
X x = {1, 2, 3};
return 0;
}
Why does your current approach not work? Because in C++11 std::initializer_list::size
is not a constexpr
or part of the initializer_list
type. You cannot use it as a template parameter.
A few possible hacks: make your type an aggregate.
#include <array>
template<std::size_t N>
struct X {
std::array<int, N> x;
};
int main()
{
X<3> x = {{{1, 2, 3}}}; // triple braces required
return 0;
}
Provide a make_*
function to deduce the number of arguments:
#include <array>
template<std::size_t N>
struct X {
std::array<int, N> x;
};
template<typename... T>
auto make_X(T... args) -> X<sizeof...(T)>
// might want to find the common_type of the argument pack as well
{ return X<sizeof...(T)>{{{args...}}}; }
int main()
{
auto x = make_X(1, 2, 3);
return 0;
}
If you use several braces to initialize the instance, you can leverage list-init of another type to accept these conversions for compile-time constants. Here's a version that uses a raw array, so you only need parens + braces for construction:
#include <array>
#include <cstddef>
template<int... Is> struct seq {};
template<int N, int... Is> struct gen_seq : gen_seq<N-1, N-1, Is...> {};
template<int... Is> struct gen_seq<0, Is...> : seq<Is...> {};
template<std::size_t n>
class float_vec
{
private:
std::array<float, n> underlying_array;
template<int... Is>
constexpr float_vec(float const(&arr)[n], seq<Is...>)
: underlying_array{{arr[Is]...}}
{}
public:
constexpr float_vec(float const(&arr)[n])
: float_vec(arr, gen_seq<n>{})
{}
};
int main()
{
float_vec<4> v0 ({1, 2, 3, 4}); // fine
float_vec<4> v1 {{1, 2, 3, 4}}; // fine
float_vec<4> v2 = {{1, 2, 3, 4}}; // fine
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With