I'm trying to apply an if condition over a dataframe, but I'm missing something (error: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().)
raw_data = {'age1': [23,45,21],'age2': [10,20,50]}
df = pd.DataFrame(raw_data, columns = ['age1','age2'])
def my_fun (var1,var2,var3):
if (df[var1]-df[var2])>0 :
df[var3]=df[var1]-df[var2]
else:
df[var3]=0
print(df[var3])
my_fun('age1','age2','diff')
The pandas. DataFrame. duplicated() method is used to find duplicate rows in a DataFrame. It returns a boolean series which identifies whether a row is duplicate or unique.
Remove All Duplicate Rows from Pandas DataFrame You can set 'keep=False' in the drop_duplicates() function to remove all the duplicate rows. For E.x, df. drop_duplicates(keep=False) .
By using 'last', the last occurrence of each set of duplicated values is set on False and all others on True. By setting keep on False, all duplicates are True. To find duplicates on specific column(s), use subset .
You can use numpy.where
:
def my_fun (var1,var2,var3):
df[var3]= np.where((df[var1]-df[var2])>0, df[var1]-df[var2], 0)
return df
df1 = my_fun('age1','age2','diff')
print (df1)
age1 age2 diff
0 23 10 13
1 45 20 25
2 21 50 0
Error is better explain here.
Slowier solution with apply
, where need axis=1
for data processing by rows:
def my_fun(x, var1, var2, var3):
print (x)
if (x[var1]-x[var2])>0 :
x[var3]=x[var1]-x[var2]
else:
x[var3]=0
return x
print (df.apply(lambda x: my_fun(x, 'age1', 'age2','diff'), axis=1))
age1 age2 diff
0 23 10 13
1 45 20 25
2 21 50 0
Also is possible use loc
, but sometimes data can be overwritten:
def my_fun(x, var1, var2, var3):
print (x)
mask = (x[var1]-x[var2])>0
x.loc[mask, var3] = x[var1]-x[var2]
x.loc[~mask, var3] = 0
return x
print (my_fun(df, 'age1', 'age2','diff'))
age1 age2 diff
0 23 10 13.0
1 45 20 25.0
2 21 50 0.0
You can use pandas.Series.where
df.assign(age3=(df.age1 - df.age2).where(df.age1 > df.age2, 0))
age1 age2 age3
0 23 10 13
1 45 20 25
2 21 50 0
You can wrap this in a function
def my_fun(v1, v2):
return v1.sub(v2).where(v1 > v2, 0)
df.assign(age3=my_fun(df.age1, df.age2))
age1 age2 age3
0 23 10 13
1 45 20 25
2 21 50 0
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With