If I create colors by e.g:
import numpy as np
from matplotlib import pyplot as plt
n = 6
color = plt.cm.coolwarm(np.linspace(0.1,0.9,n))
color
color is a numpy array:
array([[ 0.34832334, 0.46571115, 0.88834616, 1. ],
[ 0.56518158, 0.69943844, 0.99663507, 1. ],
[ 0.77737753, 0.84092121, 0.9461493 , 1. ],
[ 0.93577377, 0.8122367 , 0.74715647, 1. ],
[ 0.96049006, 0.61627642, 0.4954666 , 1. ],
[ 0.83936494, 0.32185622, 0.26492398, 1. ]])
However, If I plug in the RGB values (without the alpha value 1) as tuples in my .mplstyle
file (map(tuple,color[:,0:-1])
), I get an error similar to this one:
in file "/home/moritz/.config/matplotlib/stylelib/ggplot.mplstyle"
Key axes.color_cycle: [(0.34832334141176474 does not look like a color arg
(val, error_details, msg))
Any ideas why?
For Matplotlib 2.2, using the cycler
module will do the trick, without the need to convert to Hex values.
import cycler
n = 100
color = pyplot.cm.viridis(np.linspace(0, 1,n))
mpl.rcParams['axes.prop_cycle'] = cycler.cycler('color', color)
If you want to cycle through N
colors from a "continous" colormap, like e.g. the default viridis map, the solution by @Gerges works nicely.
import matplotlib.pyplot as plt
N = 6
plt.rcParams["axes.prop_cycle"] = plt.cycler("color", plt.cm.viridis(np.linspace(0,1,N)))
fig, ax = plt.subplots()
for i in range(N):
ax.plot([0,1], [i, 2*i])
plt.show()
Matplotlib provides a few colormap that are "discrete" in the sense that they hold some low number of distinct colors for qualitative visuals, like the tab10
colormap. To cycle through such colormap, the solution might be to not use N
but just port all colors of the map to the cycler.
import matplotlib.pyplot as plt
plt.rcParams["axes.prop_cycle"] = plt.cycler("color", plt.cm.tab20c.colors)
fig, ax = plt.subplots()
for i in range(15):
ax.plot([0,1], [i, 2*i])
plt.show()
Note that only ListedColormaps
have the .colors
attribute, so this only works for those colormap, but not e.g. the jet
map.
The following is a general purpose function that takes a colormap as input and outputs a corresponding cycler. I originally proposed this solution in this matplotlib issue.
from matplotlib.pyplot import cycler
import numpy as np
from matplotlib.colors import LinearSegmentedColormap, ListedColormap
import matplotlib.cm
def get_cycle(cmap, N=None, use_index="auto"):
if isinstance(cmap, str):
if use_index == "auto":
if cmap in ['Pastel1', 'Pastel2', 'Paired', 'Accent',
'Dark2', 'Set1', 'Set2', 'Set3',
'tab10', 'tab20', 'tab20b', 'tab20c']:
use_index=True
else:
use_index=False
cmap = matplotlib.cm.get_cmap(cmap)
if not N:
N = cmap.N
if use_index=="auto":
if cmap.N > 100:
use_index=False
elif isinstance(cmap, LinearSegmentedColormap):
use_index=False
elif isinstance(cmap, ListedColormap):
use_index=True
if use_index:
ind = np.arange(int(N)) % cmap.N
return cycler("color",cmap(ind))
else:
colors = cmap(np.linspace(0,1,N))
return cycler("color",colors)
Usage for the "continuous" case:
import matplotlib.pyplot as plt
N = 6
plt.rcParams["axes.prop_cycle"] = get_cycle("viridis", N)
fig, ax = plt.subplots()
for i in range(N):
ax.plot([0,1], [i, 2*i])
plt.show()
Usage for the "discrete" case
import matplotlib.pyplot as plt
plt.rcParams["axes.prop_cycle"] = get_cycle("tab20c")
fig, ax = plt.subplots()
for i in range(15):
ax.plot([0,1], [i, 2*i])
plt.show()
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With