We can use matplotlib to update a plot on every iteration during the loop. With the help of matplotlib. pyplot. draw() function we can update the plot on the same figure during the loop.
Update Plot Using Data LinkingCreate the variable x to represent the iteration number and y to represent the approximation. Plot the initial values of x and y . Turn on data linking using linkdata on so that the plot updates when the variables change. Then, update x and y in a for loop.
You essentially have two options:
Do exactly what you're currently doing, but call graph1.clear()
and graph2.clear()
before replotting the data. This is the slowest, but most simplest and most robust option.
Instead of replotting, you can just update the data of the plot objects. You'll need to make some changes in your code, but this should be much, much faster than replotting things every time. However, the shape of the data that you're plotting can't change, and if the range of your data is changing, you'll need to manually reset the x and y axis limits.
To give an example of the second option:
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0, 6*np.pi, 100)
y = np.sin(x)
# You probably won't need this if you're embedding things in a tkinter plot...
plt.ion()
fig = plt.figure()
ax = fig.add_subplot(111)
line1, = ax.plot(x, y, 'r-') # Returns a tuple of line objects, thus the comma
for phase in np.linspace(0, 10*np.pi, 500):
line1.set_ydata(np.sin(x + phase))
fig.canvas.draw()
fig.canvas.flush_events()
You can also do like the following: This will draw a 10x1 random matrix data on the plot for 50 cycles of the for loop.
import matplotlib.pyplot as plt
import numpy as np
plt.ion()
for i in range(50):
y = np.random.random([10,1])
plt.plot(y)
plt.draw()
plt.pause(0.0001)
plt.clf()
This worked for me. Repeatedly calls a function updating the graph every time.
import matplotlib.pyplot as plt
import matplotlib.animation as anim
def plot_cont(fun, xmax):
y = []
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
def update(i):
yi = fun()
y.append(yi)
x = range(len(y))
ax.clear()
ax.plot(x, y)
print i, ': ', yi
a = anim.FuncAnimation(fig, update, frames=xmax, repeat=False)
plt.show()
"fun" is a function that returns an integer. FuncAnimation will repeatedly call "update", it will do that "xmax" times.
In case anyone comes across this article looking for what I was looking for, I found examples at
How to visualize scalar 2D data with Matplotlib?
and
http://mri.brechmos.org/2009/07/automatically-update-a-figure-in-a-loop (on web.archive.org)
then modified them to use imshow with an input stack of frames, instead of generating and using contours on the fly.
Starting with a 3D array of images of shape (nBins, nBins, nBins), called frames
.
def animate_frames(frames):
nBins = frames.shape[0]
frame = frames[0]
tempCS1 = plt.imshow(frame, cmap=plt.cm.gray)
for k in range(nBins):
frame = frames[k]
tempCS1 = plt.imshow(frame, cmap=plt.cm.gray)
del tempCS1
fig.canvas.draw()
#time.sleep(1e-2) #unnecessary, but useful
fig.clf()
fig = plt.figure()
ax = fig.add_subplot(111)
win = fig.canvas.manager.window
fig.canvas.manager.window.after(100, animate_frames, frames)
I also found a much simpler way to go about this whole process, albeit less robust:
fig = plt.figure()
for k in range(nBins):
plt.clf()
plt.imshow(frames[k],cmap=plt.cm.gray)
fig.canvas.draw()
time.sleep(1e-6) #unnecessary, but useful
Note that both of these only seem to work with ipython --pylab=tk
, a.k.a.backend = TkAgg
Thank you for the help with everything.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With