Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Find column whose name contains a specific string

People also ask

How do I find a specific name in Pandas?

To access the names of a Pandas dataframe, we can the method columns(). For example, if our dataframe is called df we just type print(df. columns) to get all the columns of the Pandas dataframe. After this, we can work with the columns to access certain columns, rename a column, and so on.

How do I find a specific column in a Dataframe?

This is the most basic way to select a single column from a dataframe, just put the string name of the column in brackets. Returns a pandas series. Passing a list in the brackets lets you select multiple columns at the same time.

How do I search for a specific column in Python?

You can use the loc and iloc functions to access columns in a Pandas DataFrame. Let's see how. If we wanted to access a certain column in our DataFrame, for example the Grades column, we could simply use the loc function and specify the name of the column in order to retrieve it.


Just iterate over DataFrame.columns, now this is an example in which you will end up with a list of column names that match:

import pandas as pd

data = {'spike-2': [1,2,3], 'hey spke': [4,5,6], 'spiked-in': [7,8,9], 'no': [10,11,12]}
df = pd.DataFrame(data)

spike_cols = [col for col in df.columns if 'spike' in col]
print(list(df.columns))
print(spike_cols)

Output:

['hey spke', 'no', 'spike-2', 'spiked-in']
['spike-2', 'spiked-in']

Explanation:

  1. df.columns returns a list of column names
  2. [col for col in df.columns if 'spike' in col] iterates over the list df.columns with the variable col and adds it to the resulting list if col contains 'spike'. This syntax is list comprehension.

If you only want the resulting data set with the columns that match you can do this:

df2 = df.filter(regex='spike')
print(df2)

Output:

   spike-2  spiked-in
0        1          7
1        2          8
2        3          9

This answer uses the DataFrame.filter method to do this without list comprehension:

import pandas as pd

data = {'spike-2': [1,2,3], 'hey spke': [4,5,6]}
df = pd.DataFrame(data)

print(df.filter(like='spike').columns)

Will output just 'spike-2'. You can also use regex, as some people suggested in comments above:

print(df.filter(regex='spike|spke').columns)

Will output both columns: ['spike-2', 'hey spke']


You can also use df.columns[df.columns.str.contains(pat = 'spike')]

data = {'spike-2': [1,2,3], 'hey spke': [4,5,6], 'spiked-in': [7,8,9], 'no': [10,11,12]}
df = pd.DataFrame(data)

colNames = df.columns[df.columns.str.contains(pat = 'spike')] 

print(colNames)

This will output the column names: 'spike-2', 'spiked-in'

More about pandas.Series.str.contains.


# select columns containing 'spike'
df.filter(like='spike', axis=1)

You can also select by name, regular expression. Refer to: pandas.DataFrame.filter


df.loc[:,df.columns.str.contains("spike")]

You also can use this code:

spike_cols =[x for x in df.columns[df.columns.str.contains('spike')]]