Regarding the core of the algorithm, keep in mind that a BFS-search will not explore one path at a time but all. So you cannot just store one node in your queue but rather a path. Then you simply check if the next node is not already in your current path to add it to avoid cycles.
Breadth first search is one of the basic and essential searching algorithms on graphs. As a result of how the algorithm works, the path found by breadth first search to any node is the shortest path to that node, i.e the path that contains the smallest number of edges in unweighted graphs.
You should have look at http://en.wikipedia.org/wiki/Breadth-first_search first.
Below is a quick implementation, in which I used a list of list to represent the queue of paths.
# graph is in adjacent list representation
graph = {
'1': ['2', '3', '4'],
'2': ['5', '6'],
'5': ['9', '10'],
'4': ['7', '8'],
'7': ['11', '12']
}
def bfs(graph, start, end):
# maintain a queue of paths
queue = []
# push the first path into the queue
queue.append([start])
while queue:
# get the first path from the queue
path = queue.pop(0)
# get the last node from the path
node = path[-1]
# path found
if node == end:
return path
# enumerate all adjacent nodes, construct a
# new path and push it into the queue
for adjacent in graph.get(node, []):
new_path = list(path)
new_path.append(adjacent)
queue.append(new_path)
print bfs(graph, '1', '11')
This prints: ['1', '4', '7', '11']
Another approach would be maintaining a mapping from each node to its parent, and when inspecting the adjacent node, record its parent. When the search is done, simply backtrace according the parent mapping.
graph = {
'1': ['2', '3', '4'],
'2': ['5', '6'],
'5': ['9', '10'],
'4': ['7', '8'],
'7': ['11', '12']
}
def backtrace(parent, start, end):
path = [end]
while path[-1] != start:
path.append(parent[path[-1]])
path.reverse()
return path
def bfs(graph, start, end):
parent = {}
queue = []
queue.append(start)
while queue:
node = queue.pop(0)
if node == end:
return backtrace(parent, start, end)
for adjacent in graph.get(node, []):
if node not in queue :
parent[adjacent] = node # <<<<< record its parent
queue.append(adjacent)
print bfs(graph, '1', '11')
The above codes are based on the assumption that there's no cycles.
Very easy code. You keep appending the path each time you discover a node.
graph = {
'A': set(['B', 'C']),
'B': set(['A', 'D', 'E']),
'C': set(['A', 'F']),
'D': set(['B']),
'E': set(['B', 'F']),
'F': set(['C', 'E'])
}
def retunShortestPath(graph, start, end):
queue = [(start,[start])]
visited = set()
while queue:
vertex, path = queue.pop(0)
visited.add(vertex)
for node in graph[vertex]:
if node == end:
return path + [end]
else:
if node not in visited:
visited.add(node)
queue.append((node, path + [node]))
I liked qiao's first answer very much!
The only thing missing here is to mark the vertexes as visited.
Why we need to do it?
Lets imagine that there is another node number 13 connected from node 11. Now our goal is to find node 13.
After a little bit of a run the queue will look like this:
[[1, 2, 6], [1, 3, 10], [1, 4, 7], [1, 4, 8], [1, 2, 5, 9], [1, 2, 5, 10]]
Note that there are TWO paths with node number 10 at the end.
Which means that the paths from node number 10 will be checked twice. In this case it doesn't look so bad because node number 10 doesn't have any children.. But it could be really bad (even here we will check that node twice for no reason..)
Node number 13 isn't in those paths so the program won't return before reaching to the second path with node number 10 at the end..And we will recheck it..
All we are missing is a set to mark the visited nodes and not to check them again..
This is qiao's code after the modification:
graph = {
1: [2, 3, 4],
2: [5, 6],
3: [10],
4: [7, 8],
5: [9, 10],
7: [11, 12],
11: [13]
}
def bfs(graph_to_search, start, end):
queue = [[start]]
visited = set()
while queue:
# Gets the first path in the queue
path = queue.pop(0)
# Gets the last node in the path
vertex = path[-1]
# Checks if we got to the end
if vertex == end:
return path
# We check if the current node is already in the visited nodes set in order not to recheck it
elif vertex not in visited:
# enumerate all adjacent nodes, construct a new path and push it into the queue
for current_neighbour in graph_to_search.get(vertex, []):
new_path = list(path)
new_path.append(current_neighbour)
queue.append(new_path)
# Mark the vertex as visited
visited.add(vertex)
print bfs(graph, 1, 13)
The output of the program will be:
[1, 4, 7, 11, 13]
Without the unneccecery rechecks..
I thought I'd try code this up for fun:
graph = {
'1': ['2', '3', '4'],
'2': ['5', '6'],
'5': ['9', '10'],
'4': ['7', '8'],
'7': ['11', '12']
}
def bfs(graph, forefront, end):
# assumes no cycles
next_forefront = [(node, path + ',' + node) for i, path in forefront if i in graph for node in graph[i]]
for node,path in next_forefront:
if node==end:
return path
else:
return bfs(graph,next_forefront,end)
print bfs(graph,[('1','1')],'11')
# >>>
# 1, 4, 7, 11
If you want cycles you could add this:
for i, j in for_front: # allow cycles, add this code
if i in graph:
del graph[i]
I like both @Qiao first answer and @Or's addition. For a sake of a little less processing I would like to add to Or's answer.
In @Or's answer keeping track of visited node is great. We can also allow the program to exit sooner that it currently is. At some point in the for loop the current_neighbour
will have to be the end
, and once that happens the shortest path is found and program can return.
I would modify the the method as follow, pay close attention to the for loop
graph = {
1: [2, 3, 4],
2: [5, 6],
3: [10],
4: [7, 8],
5: [9, 10],
7: [11, 12],
11: [13]
}
def bfs(graph_to_search, start, end):
queue = [[start]]
visited = set()
while queue:
# Gets the first path in the queue
path = queue.pop(0)
# Gets the last node in the path
vertex = path[-1]
# Checks if we got to the end
if vertex == end:
return path
# We check if the current node is already in the visited nodes set in order not to recheck it
elif vertex not in visited:
# enumerate all adjacent nodes, construct a new path and push it into the queue
for current_neighbour in graph_to_search.get(vertex, []):
new_path = list(path)
new_path.append(current_neighbour)
queue.append(new_path)
#No need to visit other neighbour. Return at once
if current_neighbour == end
return new_path;
# Mark the vertex as visited
visited.add(vertex)
print bfs(graph, 1, 13)
The output and everything else will be the same. However, the code will take less time to process. This is especially useful on larger graphs. I hope this helps someone in the future.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With