Editor's note: This code example is from a version of Rust prior to 1.0 and is not syntactically valid Rust 1.0 code. Updated versions of this code produce different errors, but the answers still contain valuable information.
It seems like we cannot test for equality in the following case. Why is this? Is there a workaround? (I am using Rust 0.11).
trait A: PartialEq {}
#[deriving(PartialEq)]
enum T {Ta, Tb}
impl A for T {}
fn main() {
assert!(Ta == Ta);
assert!(Ta != Tb);
assert!(some_fn(&Ta, &Ta));
assert!(!some_fn(&Ta, &Tb));
}
fn some_fn(an_a: &A, another_a: &A) -> bool {
an_a == another_a
// ERROR ^~~~~~~~~~~~ binary operation `==` cannot be applied to type `&A`
}
fn another_fn(an_a: &A + PartialEq, another_a: &A + PartialEq) -> bool {
// ERROR: ^~~~~~~~~ only the builtin traits can be used as closure or object bounds
an_a == another_a
}
Here is the definition of the PartialEq
trait:
pub trait PartialEq<Rhs = Self>
where
Rhs: ?Sized,
{
fn eq(&self, other: &Rhs) -> bool;
fn ne(&self, other: &Rhs) -> bool { ... }
}
Note the Self
parameter type. This means that eq()
and ne()
methods accept a parameter of the same type as implementor. For example:
impl PartialEq for i32 {
fn eq(&self, other: &i32) -> bool { ... }
}
impl PartialEq for String {
fn eq(&self, other: &String) -> bool { ... }
}
Note how type of other
changes to reflect the type PartialEq
is implemented for.
This is the problem. In trait objects, the actual type is erased and unavailable at runtime. This means that it is impossible to obtain a reference to a concrete type from a trait object; in particular, you can't go from &A
to &T
in your example.
This means that it is impossible to call methods accepting or returning the Self
type on trait objects. Indeed, these methods always require a concrete type, but if you have only a trait object, there is no concrete type, and there is no way such method could work in any sensible way.
With help from Vladimir Matveev, I figured out how to use Any
to downcast my trait to a concrete type and test the resulting value for equality:
// `Any` allows us to do dynamic typecasting.
use std::any::Any;
trait A {
// An &Any can be cast to a reference to a concrete type.
fn as_any(&self) -> &dyn Any;
// Perform the test.
fn equals_a(&self, _: &dyn A) -> bool;
}
#[derive(Debug, PartialEq)]
enum T {
Ta,
Tb,
}
// Implement A for all 'static types implementing PartialEq.
impl<S: 'static + PartialEq> A for S {
fn as_any(&self) -> &dyn Any {
self
}
fn equals_a(&self, other: &dyn A) -> bool {
// Do a type-safe casting. If the types are different,
// return false, otherwise test the values for equality.
other
.as_any()
.downcast_ref::<S>()
.map_or(false, |a| self == a)
}
}
fn main() {
assert_eq!(T::Ta, T::Ta);
assert_ne!(T::Ta, T::Tb);
assert!(some_fn(&T::Ta, &T::Ta));
assert!(!some_fn(&T::Ta, &T::Tb));
}
fn some_fn(an_a: &dyn A, another_a: &dyn A) -> bool {
// It works!
an_a.equals_a(another_a)
}
In certain cases of trait objects, you wish to compare them based on some properties exposed via the trait. You can achieve this by implementing methods on the trait type itself:
trait A {
fn id(&self) -> i32;
}
impl PartialEq for dyn A + '_ {
fn eq(&self, other: &Self) -> bool {
self.id() == other.id()
}
}
impl Eq for dyn A + '_ {}
fn some_fn(an_a: &dyn A, another_a: &dyn A) -> bool {
an_a == another_a
}
This doesn't directly address the original case which wants to delegate back to the implementation of PartialEq
of the underlying type, but you can combine the existing solution:
impl PartialEq for dyn A + '_ {
fn eq(&self, other: &Self) -> bool {
self.equals_a(other)
}
}
See also:
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With