I have a Pandas Dataframe as below:
itm Date Amount 67 420 2012-09-30 00:00:00 65211 68 421 2012-09-09 00:00:00 29424 69 421 2012-09-16 00:00:00 29877 70 421 2012-09-23 00:00:00 30990 71 421 2012-09-30 00:00:00 61303 72 485 2012-09-09 00:00:00 71781 73 485 2012-09-16 00:00:00 NaN 74 485 2012-09-23 00:00:00 11072 75 485 2012-09-30 00:00:00 113702 76 489 2012-09-09 00:00:00 64731 77 489 2012-09-16 00:00:00 NaN
When I try to apply a function to the Amount column, I get the following error:
ValueError: cannot convert float NaN to integer
I have tried applying a function using .isnan from the Math Module I have tried the pandas .replace attribute I tried the .sparse data attribute from pandas 0.9 I have also tried if NaN == NaN statement in a function. I have also looked at this article How do I replace NA values with zeros in an R dataframe? whilst looking at some other articles. All the methods I have tried have not worked or do not recognise NaN. Any Hints or solutions would be appreciated.
fillna() method is used to replace missing values (Nan or NA) with a specified value.
I believe DataFrame.fillna()
will do this for you.
Link to Docs for a dataframe and for a Series.
Example:
In [7]: df Out[7]: 0 1 0 NaN NaN 1 -0.494375 0.570994 2 NaN NaN 3 1.876360 -0.229738 4 NaN NaN In [8]: df.fillna(0) Out[8]: 0 1 0 0.000000 0.000000 1 -0.494375 0.570994 2 0.000000 0.000000 3 1.876360 -0.229738 4 0.000000 0.000000
To fill the NaNs in only one column, select just that column. in this case I'm using inplace=True to actually change the contents of df.
In [12]: df[1].fillna(0, inplace=True) Out[12]: 0 0.000000 1 0.570994 2 0.000000 3 -0.229738 4 0.000000 Name: 1 In [13]: df Out[13]: 0 1 0 NaN 0.000000 1 -0.494375 0.570994 2 NaN 0.000000 3 1.876360 -0.229738 4 NaN 0.000000
EDIT:
To avoid a SettingWithCopyWarning
, use the built in column-specific functionality:
df.fillna({1:0}, inplace=True)
It is not guaranteed that the slicing returns a view or a copy. You can do
df['column'] = df['column'].fillna(value)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With