Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

How to optimize MAPE code in Python?

I need to have a MAPE function, however I was not able to find it in standard packages ... Below, my implementation of this function.

def mape(actual, predict): 
    tmp, n = 0.0, 0
    for i in range(0, len(actual)):
        if actual[i] <> 0:
            tmp += math.fabs(actual[i]-predict[i])/actual[i]
            n += 1
    return (tmp/n)

I don't like it, it's super not optimal in terms of speed. How to rewrite the code to be more Pythonic way and boost the speed?

like image 802
SpanishBoy Avatar asked Feb 15 '17 13:02

SpanishBoy


1 Answers

Here's one vectorized approach with masking -

def mape_vectorized(a, b): 
    mask = a <> 0
    return (np.fabs(a[mask] - b[mask])/a[mask]).mean()

Probably a faster one with masking after division computation -

def mape_vectorized_v2(a, b): 
    mask = a <> 0
    return (np.fabs(a - b)/a)[mask].mean() 

Runtime test -

In [217]: a = np.random.randint(-10,10,(10000))
     ...: b = np.random.randint(-10,10,(10000))
     ...: 

In [218]: %timeit mape(a,b)
100 loops, best of 3: 11.7 ms per loop

In [219]: %timeit mape_vectorized(a,b)
1000 loops, best of 3: 273 µs per loop

In [220]: %timeit mape_vectorized_v2(a,b)
1000 loops, best of 3: 220 µs per loop
like image 183
Divakar Avatar answered Sep 17 '22 23:09

Divakar