I have log files, which have many lines in the form of :
LogLevel    [13/10/2015 00:30:00.650]  [Message Text]
My goal is to convert each line in the log file into a nice Data frame. I have tired to do that, by splitting the lines on the [ character, however I am still not getting a neat dataframe.
My code:
level = []
time = []
text = []
   with open(filename) as inf:
     for line in inf:
       parts = line.split('[')
         if len(parts) > 1:  
           level = parts[0]
           time = parts[1]
           text = parts[2]
        print (parts[0],parts[1],parts[2])
 s1 = pd.Series({'Level':level, 'Time': time, 'Text':text})
 df = pd.DataFrame(s1).reset_index()
Heres my printed Data frame:
Info      10/08/16 10:56:09.843]   In Function CCatalinaPrinter::ItemDescription()]
Info      10/08/16 10:56:09.843]   Sending UPC Description Message ]
How can I improve this to strip the whitespace and the other ']' character
Thank you
You can use read_csv with separator \s*\[ - whitespaces with [:
import pandas as pd
from pandas.compat import StringIO
temp=u"""LogLevel    [13/10/2015 00:30:00.650]  [Message Text]
LogLevel    [13/10/2015 00:30:00.650]  [Message Text]
LogLevel    [13/10/2015 00:30:00.650]  [Message Text]
LogLevel    [13/10/2015 00:30:00.650]  [Message Text]"""
#after testing replace StringIO(temp) to filename
df = pd.read_csv(StringIO(temp), sep="\s*\[", names=['Level','Time','Text'], engine='python')
Then remove ] by strip and convert column Time to_datetime:
df.Time = pd.to_datetime(df.Time.str.strip(']'), format='%d/%m/%Y %H:%M:%S.%f')
df.Text = df.Text.str.strip(']')
print (df)
      Level                    Time          Text
0  LogLevel 2015-10-13 00:30:00.650  Message Text
1  LogLevel 2015-10-13 00:30:00.650  Message Text
2  LogLevel 2015-10-13 00:30:00.650  Message Text
3  LogLevel 2015-10-13 00:30:00.650  Message Text
print (df.dtypes)
Level            object
Time     datetime64[ns]
Text             object
dtype: object
                        If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With