I have drawn a precision-recall curve using sklearn
precision_recall_curve
function and matplotlib
package. For those of you who are familiar with precision-recall curve you know that some scientific communities only accept it when its interpolated, similar to this example here. Now my question is if any of you know how to do the interpolation in python? I have been searching for a solution for a while now but with no success! Any help would be greatly appreciated.
Solution: Both solutions by @francis and @ali_m are correct and together solved my problem. So, assuming that you get an output from the precision_recall_curve
function in sklearn
, here is what I did to plot the graph:
precision["micro"], recall["micro"], _ = precision_recall_curve(y_test.ravel(),scores.ravel())
pr = copy.deepcopy(precision[0])
rec = copy.deepcopy(recall[0])
prInv = np.fliplr([pr])[0]
recInv = np.fliplr([rec])[0]
j = rec.shape[0]-2
while j>=0:
if prInv[j+1]>prInv[j]:
prInv[j]=prInv[j+1]
j=j-1
decreasing_max_precision = np.maximum.accumulate(prInv[::-1])[::-1]
plt.plot(recInv, decreasing_max_precision, marker= markers[mcounter], label=methodNames[countOfMethods]+': AUC={0:0.2f}'.format(average_precision[0]))
And these lines will plot the interpolated curves if you put them in a for loop and pass it the data of each method at each iteration. Note that this will not plot the non-interpolated precision-recall curves.
@francis's solution can be vectorized using np.maximum.accumulate
.
import numpy as np
import matplotlib.pyplot as plt
recall = np.linspace(0.0, 1.0, num=42)
precision = np.random.rand(42)*(1.-recall)
# take a running maximum over the reversed vector of precision values, reverse the
# result to match the order of the recall vector
decreasing_max_precision = np.maximum.accumulate(precision[::-1])[::-1]
You can also use plt.step
to get rid of the for
loop used for plotting:
fig, ax = plt.subplots(1, 1)
ax.hold(True)
ax.plot(recall, precision, '--b')
ax.step(recall, decreasing_max_precision, '-r')
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With