Use Dataframe. dtypes to get Data types of columns in Dataframe. In Python's pandas module Dataframe class provides an attribute to get the data type information of each columns i.e. It returns a series object containing data type information of each column.
pandas Convert String to FloatUse pandas DataFrame. astype() function to convert column from string/int to float, you can apply this on a specific column or on an entire DataFrame. To cast the data type to 54-bit signed float, you can use numpy. float64 , numpy.
Format float value using the round() Method in Python The round() is a built-in Python method that returns the floating-point number rounded off to the given digits after the decimal point. You can use the round() method to format the float value.
import pandas as pd
pd.options.display.float_format = '${:,.2f}'.format
df = pd.DataFrame([123.4567, 234.5678, 345.6789, 456.7890],
index=['foo','bar','baz','quux'],
columns=['cost'])
print(df)
yields
cost
foo $123.46
bar $234.57
baz $345.68
quux $456.79
but this only works if you want every float to be formatted with a dollar sign.
Otherwise, if you want dollar formatting for some floats only, then I think you'll have to pre-modify the dataframe (converting those floats to strings):
import pandas as pd
df = pd.DataFrame([123.4567, 234.5678, 345.6789, 456.7890],
index=['foo','bar','baz','quux'],
columns=['cost'])
df['foo'] = df['cost']
df['cost'] = df['cost'].map('${:,.2f}'.format)
print(df)
yields
cost foo
foo $123.46 123.4567
bar $234.57 234.5678
baz $345.68 345.6789
quux $456.79 456.7890
If you don't want to modify the dataframe, you could use a custom formatter for that column.
import pandas as pd
pd.options.display.float_format = '${:,.2f}'.format
df = pd.DataFrame([123.4567, 234.5678, 345.6789, 456.7890],
index=['foo','bar','baz','quux'],
columns=['cost'])
print df.to_string(formatters={'cost':'${:,.2f}'.format})
yields
cost
foo $123.46
bar $234.57
baz $345.68
quux $456.79
As of Pandas 0.17 there is now a styling system which essentially provides formatted views of a DataFrame using Python format strings:
import pandas as pd
import numpy as np
constants = pd.DataFrame([('pi',np.pi),('e',np.e)],
columns=['name','value'])
C = constants.style.format({'name': '~~ {} ~~', 'value':'--> {:15.10f} <--'})
C
which displays
This is a view object; the DataFrame itself does not change formatting, but updates in the DataFrame are reflected in the view:
constants.name = ['pie','eek']
C
However it appears to have some limitations:
Adding new rows and/or columns in-place seems to cause inconsistency in the styled view (doesn't add row/column labels):
constants.loc[2] = dict(name='bogus', value=123.456)
constants['comment'] = ['fee','fie','fo']
constants
which looks ok but:
C
Formatting works only for values, not index entries:
constants = pd.DataFrame([('pi',np.pi),('e',np.e)],
columns=['name','value'])
constants.set_index('name',inplace=True)
C = constants.style.format({'name': '~~ {} ~~', 'value':'--> {:15.10f} <--'})
C
Similar to unutbu above, you could also use applymap
as follows:
import pandas as pd
df = pd.DataFrame([123.4567, 234.5678, 345.6789, 456.7890],
index=['foo','bar','baz','quux'],
columns=['cost'])
df = df.applymap("${0:.2f}".format)
I like using pandas.apply() with python format().
import pandas as pd
s = pd.Series([1.357, 1.489, 2.333333])
make_float = lambda x: "${:,.2f}".format(x)
s.apply(make_float)
Also, it can be easily used with multiple columns...
df = pd.concat([s, s * 2], axis=1)
make_floats = lambda row: "${:,.2f}, ${:,.3f}".format(row[0], row[1])
df.apply(make_floats, axis=1)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With