Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Getting distance between two points based on latitude/longitude

People also ask

How do you calculate distance using latitude?

If you treat the Earth as a sphere with a circumference of 25,000 miles, then one degree of latitude is 25,000/360 = 69.44 miles. A minute is thus 69.44/60 = 1.157 miles, and a second is 1.15/60 = 0.0193 miles, or about 101 feet.

How do you find the distance between two latitude longitude points in Python?

Install it via pip install mpu --user and use it like this to get the haversine distance: import mpu # Point one lat1 = 52.2296756 lon1 = 21.0122287 # Point two lat2 = 52.406374 lon2 = 16.9251681 # What you were looking for dist = mpu.


Update: 04/2018: Vincenty distance is deprecated since GeoPy version 1.13 - you should use geopy.distance.distance() instead!


The answers above are based on the Haversine formula, which assumes the earth is a sphere, which results in errors of up to about 0.5% (according to help(geopy.distance)). Vincenty distance uses more accurate ellipsoidal models such as WGS-84, and is implemented in geopy. For example,

import geopy.distance

coords_1 = (52.2296756, 21.0122287)
coords_2 = (52.406374, 16.9251681)

print geopy.distance.vincenty(coords_1, coords_2).km

will print the distance of 279.352901604 kilometers using the default ellipsoid WGS-84. (You can also choose .miles or one of several other distance units).


Edit: Just as a note, if you just need a quick and easy way of finding the distance between two points, I strongly recommend using the approach described in Kurt's answer below instead of re-implementing Haversine -- see his post for rationale.

This answer focuses just on answering the specific bug OP ran into.


It's because in Python, all the trig functions use radians, not degrees.

You can either convert the numbers manually to radians, or use the radians function from the math module:

from math import sin, cos, sqrt, atan2, radians

# approximate radius of earth in km
R = 6373.0

lat1 = radians(52.2296756)
lon1 = radians(21.0122287)
lat2 = radians(52.406374)
lon2 = radians(16.9251681)

dlon = lon2 - lon1
dlat = lat2 - lat1

a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2
c = 2 * atan2(sqrt(a), sqrt(1 - a))

distance = R * c

print("Result:", distance)
print("Should be:", 278.546, "km")

The distance is now returning the correct value of 278.545589351 km.


For people (like me) coming here via search engine and just looking for a solution which works out of the box, I recommend installing mpu. Install it via pip install mpu --user and use it like this to get the haversine distance:

import mpu

# Point one
lat1 = 52.2296756
lon1 = 21.0122287

# Point two
lat2 = 52.406374
lon2 = 16.9251681

# What you were looking for
dist = mpu.haversine_distance((lat1, lon1), (lat2, lon2))
print(dist)  # gives 278.45817507541943.

An alternative package is gpxpy.

If you don't want dependencies, you can use:

import math


def distance(origin, destination):
    """
    Calculate the Haversine distance.

    Parameters
    ----------
    origin : tuple of float
        (lat, long)
    destination : tuple of float
        (lat, long)

    Returns
    -------
    distance_in_km : float

    Examples
    --------
    >>> origin = (48.1372, 11.5756)  # Munich
    >>> destination = (52.5186, 13.4083)  # Berlin
    >>> round(distance(origin, destination), 1)
    504.2
    """
    lat1, lon1 = origin
    lat2, lon2 = destination
    radius = 6371  # km

    dlat = math.radians(lat2 - lat1)
    dlon = math.radians(lon2 - lon1)
    a = (math.sin(dlat / 2) * math.sin(dlat / 2) +
         math.cos(math.radians(lat1)) * math.cos(math.radians(lat2)) *
         math.sin(dlon / 2) * math.sin(dlon / 2))
    c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a))
    d = radius * c

    return d


if __name__ == '__main__':
    import doctest
    doctest.testmod()

The other alternative package is haversine

from haversine import haversine, Unit

lyon = (45.7597, 4.8422) # (lat, lon)
paris = (48.8567, 2.3508)

haversine(lyon, paris)
>> 392.2172595594006  # in kilometers

haversine(lyon, paris, unit=Unit.MILES)
>> 243.71201856934454  # in miles

# you can also use the string abbreviation for units:
haversine(lyon, paris, unit='mi')
>> 243.71201856934454  # in miles

haversine(lyon, paris, unit=Unit.NAUTICAL_MILES)
>> 211.78037755311516  # in nautical miles

They claim to have performance optimization for distances between all points in two vectors

from haversine import haversine_vector, Unit

lyon = (45.7597, 4.8422) # (lat, lon)
paris = (48.8567, 2.3508)
new_york = (40.7033962, -74.2351462)

haversine_vector([lyon, lyon], [paris, new_york], Unit.KILOMETERS)

>> array([ 392.21725956, 6163.43638211])

I arrived at a much simpler and robust solution which is using geodesic from geopy package since you'll be highly likely using it in your project anyways so no extra package installation needed.

Here is my solution:

from geopy.distance import geodesic


origin = (30.172705, 31.526725)  # (latitude, longitude) don't confuse
dist = (30.288281, 31.732326)

print(geodesic(origin, dist).meters)  # 23576.805481751613
print(geodesic(origin, dist).kilometers)  # 23.576805481751613
print(geodesic(origin, dist).miles)  # 14.64994773134371

geopy


There are multiple ways to calculate the distance based on the coordinates i.e latitude and longitude

Install and import

from geopy import distance
from math import sin, cos, sqrt, atan2, radians
from sklearn.neighbors import DistanceMetric
import osrm
import numpy as np

Define coordinates

lat1, lon1, lat2, lon2, R = 20.9467,72.9520, 21.1702, 72.8311, 6373.0
coordinates_from = [lat1, lon1]
coordinates_to = [lat2, lon2]

Using haversine

dlon = radians(lon2) - radians(lon1)
dlat = radians(lat2) - radians(lat1)
    
a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2
c = 2 * atan2(sqrt(a), sqrt(1 - a))
    
distance_haversine_formula = R * c
print('distance using haversine formula: ', distance_haversine_formula)

Using haversine with sklearn

dist = DistanceMetric.get_metric('haversine')
    
X = [[radians(lat1), radians(lon1)], [radians(lat2), radians(lon2)]]
distance_sklearn = R * dist.pairwise(X)
print('distance using sklearn: ', np.array(distance_sklearn).item(1))

Using OSRM

osrm_client = osrm.Client(host='http://router.project-osrm.org')
coordinates_osrm = [[lon1, lat1], [lon2, lat2]] # note that order is lon, lat
    
osrm_response = osrm_client.route(coordinates=coordinates_osrm, overview=osrm.overview.full)
dist_osrm = osrm_response.get('routes')[0].get('distance')/1000 # in km
print('distance using OSRM: ', dist_osrm)

Using geopy

distance_geopy = distance.distance(coordinates_from, coordinates_to).km
print('distance using geopy: ', distance_geopy)
    
distance_geopy_great_circle = distance.great_circle(coordinates_from, coordinates_to).km 
print('distance using geopy great circle: ', distance_geopy_great_circle)

Output

distance using haversine formula:  26.07547017310917
distance using sklearn:  27.847882224769783
distance using OSRM:  33.091699999999996
distance using geopy:  27.7528030550408
distance using geopy great circle:  27.839182219511834

import numpy as np


def Haversine(lat1,lon1,lat2,lon2, **kwarg):
    """
    This uses the ‘haversine’ formula to calculate the great-circle distance between two points – that is, 
    the shortest distance over the earth’s surface – giving an ‘as-the-crow-flies’ distance between the points 
    (ignoring any hills they fly over, of course!).
    Haversine
    formula:    a = sin²(Δφ/2) + cos φ1 ⋅ cos φ2 ⋅ sin²(Δλ/2)
    c = 2 ⋅ atan2( √a, √(1−a) )
    d = R ⋅ c
    where   φ is latitude, λ is longitude, R is earth’s radius (mean radius = 6,371km);
    note that angles need to be in radians to pass to trig functions!
    """
    R = 6371.0088
    lat1,lon1,lat2,lon2 = map(np.radians, [lat1,lon1,lat2,lon2])

    dlat = lat2 - lat1
    dlon = lon2 - lon1
    a = np.sin(dlat/2)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2) **2
    c = 2 * np.arctan2(a**0.5, (1-a)**0.5)
    d = R * c
    return round(d,4)

You can use Uber's H3,point_dist() function to compute the spherical distance between two (lat, lng) points. We can set return unit ('km', 'm', or 'rads'). The default unit is Km.

Example :

import h3

coords_1 = (52.2296756, 21.0122287)
coords_2 = (52.406374, 16.9251681)
distance = h3.point_dist(coords_1, coords_2, unit='m') # to get distance in meters

Hope this will usefull!