If you treat the Earth as a sphere with a circumference of 25,000 miles, then one degree of latitude is 25,000/360 = 69.44 miles. A minute is thus 69.44/60 = 1.157 miles, and a second is 1.15/60 = 0.0193 miles, or about 101 feet.
Install it via pip install mpu --user and use it like this to get the haversine distance: import mpu # Point one lat1 = 52.2296756 lon1 = 21.0122287 # Point two lat2 = 52.406374 lon2 = 16.9251681 # What you were looking for dist = mpu.
Update: 04/2018: Vincenty distance is deprecated since GeoPy version 1.13 - you should use geopy.distance.distance()
instead!
The answers above are based on the Haversine formula, which assumes the earth is a sphere, which results in errors of up to about 0.5% (according to help(geopy.distance)
). Vincenty distance uses more accurate ellipsoidal models such as WGS-84, and is implemented in geopy. For example,
import geopy.distance
coords_1 = (52.2296756, 21.0122287)
coords_2 = (52.406374, 16.9251681)
print geopy.distance.vincenty(coords_1, coords_2).km
will print the distance of 279.352901604
kilometers using the default ellipsoid WGS-84. (You can also choose .miles
or one of several other distance units).
Edit: Just as a note, if you just need a quick and easy way of finding the distance between two points, I strongly recommend using the approach described in Kurt's answer below instead of re-implementing Haversine -- see his post for rationale.
This answer focuses just on answering the specific bug OP ran into.
It's because in Python, all the trig functions use radians, not degrees.
You can either convert the numbers manually to radians, or use the radians
function from the math module:
from math import sin, cos, sqrt, atan2, radians
# approximate radius of earth in km
R = 6373.0
lat1 = radians(52.2296756)
lon1 = radians(21.0122287)
lat2 = radians(52.406374)
lon2 = radians(16.9251681)
dlon = lon2 - lon1
dlat = lat2 - lat1
a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2
c = 2 * atan2(sqrt(a), sqrt(1 - a))
distance = R * c
print("Result:", distance)
print("Should be:", 278.546, "km")
The distance is now returning the correct value of 278.545589351
km.
For people (like me) coming here via search engine and just looking for a solution which works out of the box, I recommend installing mpu
. Install it via pip install mpu --user
and use it like this to get the haversine distance:
import mpu
# Point one
lat1 = 52.2296756
lon1 = 21.0122287
# Point two
lat2 = 52.406374
lon2 = 16.9251681
# What you were looking for
dist = mpu.haversine_distance((lat1, lon1), (lat2, lon2))
print(dist) # gives 278.45817507541943.
An alternative package is gpxpy
.
If you don't want dependencies, you can use:
import math
def distance(origin, destination):
"""
Calculate the Haversine distance.
Parameters
----------
origin : tuple of float
(lat, long)
destination : tuple of float
(lat, long)
Returns
-------
distance_in_km : float
Examples
--------
>>> origin = (48.1372, 11.5756) # Munich
>>> destination = (52.5186, 13.4083) # Berlin
>>> round(distance(origin, destination), 1)
504.2
"""
lat1, lon1 = origin
lat2, lon2 = destination
radius = 6371 # km
dlat = math.radians(lat2 - lat1)
dlon = math.radians(lon2 - lon1)
a = (math.sin(dlat / 2) * math.sin(dlat / 2) +
math.cos(math.radians(lat1)) * math.cos(math.radians(lat2)) *
math.sin(dlon / 2) * math.sin(dlon / 2))
c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a))
d = radius * c
return d
if __name__ == '__main__':
import doctest
doctest.testmod()
The other alternative package is haversine
from haversine import haversine, Unit
lyon = (45.7597, 4.8422) # (lat, lon)
paris = (48.8567, 2.3508)
haversine(lyon, paris)
>> 392.2172595594006 # in kilometers
haversine(lyon, paris, unit=Unit.MILES)
>> 243.71201856934454 # in miles
# you can also use the string abbreviation for units:
haversine(lyon, paris, unit='mi')
>> 243.71201856934454 # in miles
haversine(lyon, paris, unit=Unit.NAUTICAL_MILES)
>> 211.78037755311516 # in nautical miles
They claim to have performance optimization for distances between all points in two vectors
from haversine import haversine_vector, Unit
lyon = (45.7597, 4.8422) # (lat, lon)
paris = (48.8567, 2.3508)
new_york = (40.7033962, -74.2351462)
haversine_vector([lyon, lyon], [paris, new_york], Unit.KILOMETERS)
>> array([ 392.21725956, 6163.43638211])
I arrived at a much simpler and robust solution which is using geodesic
from geopy
package since you'll be highly likely using it in your project anyways so no extra package installation needed.
Here is my solution:
from geopy.distance import geodesic
origin = (30.172705, 31.526725) # (latitude, longitude) don't confuse
dist = (30.288281, 31.732326)
print(geodesic(origin, dist).meters) # 23576.805481751613
print(geodesic(origin, dist).kilometers) # 23.576805481751613
print(geodesic(origin, dist).miles) # 14.64994773134371
geopy
There are multiple ways to calculate the distance based on the coordinates i.e latitude and longitude
from geopy import distance
from math import sin, cos, sqrt, atan2, radians
from sklearn.neighbors import DistanceMetric
import osrm
import numpy as np
lat1, lon1, lat2, lon2, R = 20.9467,72.9520, 21.1702, 72.8311, 6373.0
coordinates_from = [lat1, lon1]
coordinates_to = [lat2, lon2]
dlon = radians(lon2) - radians(lon1)
dlat = radians(lat2) - radians(lat1)
a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2
c = 2 * atan2(sqrt(a), sqrt(1 - a))
distance_haversine_formula = R * c
print('distance using haversine formula: ', distance_haversine_formula)
dist = DistanceMetric.get_metric('haversine')
X = [[radians(lat1), radians(lon1)], [radians(lat2), radians(lon2)]]
distance_sklearn = R * dist.pairwise(X)
print('distance using sklearn: ', np.array(distance_sklearn).item(1))
osrm_client = osrm.Client(host='http://router.project-osrm.org')
coordinates_osrm = [[lon1, lat1], [lon2, lat2]] # note that order is lon, lat
osrm_response = osrm_client.route(coordinates=coordinates_osrm, overview=osrm.overview.full)
dist_osrm = osrm_response.get('routes')[0].get('distance')/1000 # in km
print('distance using OSRM: ', dist_osrm)
distance_geopy = distance.distance(coordinates_from, coordinates_to).km
print('distance using geopy: ', distance_geopy)
distance_geopy_great_circle = distance.great_circle(coordinates_from, coordinates_to).km
print('distance using geopy great circle: ', distance_geopy_great_circle)
distance using haversine formula: 26.07547017310917
distance using sklearn: 27.847882224769783
distance using OSRM: 33.091699999999996
distance using geopy: 27.7528030550408
distance using geopy great circle: 27.839182219511834
import numpy as np
def Haversine(lat1,lon1,lat2,lon2, **kwarg):
"""
This uses the ‘haversine’ formula to calculate the great-circle distance between two points – that is,
the shortest distance over the earth’s surface – giving an ‘as-the-crow-flies’ distance between the points
(ignoring any hills they fly over, of course!).
Haversine
formula: a = sin²(Δφ/2) + cos φ1 ⋅ cos φ2 ⋅ sin²(Δλ/2)
c = 2 ⋅ atan2( √a, √(1−a) )
d = R ⋅ c
where φ is latitude, λ is longitude, R is earth’s radius (mean radius = 6,371km);
note that angles need to be in radians to pass to trig functions!
"""
R = 6371.0088
lat1,lon1,lat2,lon2 = map(np.radians, [lat1,lon1,lat2,lon2])
dlat = lat2 - lat1
dlon = lon2 - lon1
a = np.sin(dlat/2)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2) **2
c = 2 * np.arctan2(a**0.5, (1-a)**0.5)
d = R * c
return round(d,4)
You can use Uber's H3,point_dist()
function to compute the spherical distance between two (lat, lng) points. We can set return unit ('km', 'm', or 'rads'). The default unit is Km.
Example :
import h3
coords_1 = (52.2296756, 21.0122287)
coords_2 = (52.406374, 16.9251681)
distance = h3.point_dist(coords_1, coords_2, unit='m') # to get distance in meters
Hope this will usefull!
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With