The first step is to determine where is the BLAS library on your system. Use the command "locate libblas.so" to find the library. If several results are reported, look for the version under /usr/lib/ or /usr/lib64 or something similar to that path.
linalg. lapack ) This module contains low-level functions from the LAPACK library.
Accelerated BLAS/LAPACK libraries. NumPy searches for optimized linear algebra libraries such as BLAS and LAPACK.
BLAS (Basic Linear Algebra Subprograms) is a library of vector, vector-vector, matrix-vector and matrix-matrix operations. LAPACK, a library of dense and banded matrix linear algebra routines such as solving linear systems, the eigenvalue- and singular value decomposition.
The method numpy.show_config()
(or numpy.__config__.show()
) outputs information about linkage gathered at build time. My output looks like this. I think it means I am using the BLAS/LAPACK that ships with Mac OS.
>>> import numpy as np
>>> np.show_config()
lapack_opt_info:
extra_link_args = ['-Wl,-framework', '-Wl,Accelerate']
extra_compile_args = ['-msse3']
define_macros = [('NO_ATLAS_INFO', 3)]
blas_opt_info:
extra_link_args = ['-Wl,-framework', '-Wl,Accelerate']
extra_compile_args = ['-msse3', '-I/System/Library/Frameworks/vecLib.framework/Headers']
define_macros = [('NO_ATLAS_INFO', 3)]
What you are searching for is this: system info
I compiled numpy/scipy with atlas and i can check this with:
import numpy.distutils.system_info as sysinfo
sysinfo.get_info('atlas')
Check the documentation for more commands.
You can use the link loader dependency tool to look at the C level hook components of your build and see whether they have external dependencies on your blas and lapack of choice. I am not near a linux box right now, but on an OS X machine you can do this inside the site-packages directory which holds the installations:
$ otool -L numpy/core/_dotblas.so
numpy/core/_dotblas.so:
/System/Library/Frameworks/Accelerate.framework/Versions/A/Accelerate (compatibility version 1.0.0, current version 4.0.0)
/usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 125.2.0)
/System/Library/Frameworks/vecLib.framework/Versions/A/vecLib (compatibility version 1.0.0, current version 268.0.1)
$ otool -L scipy/linalg/flapack.so
scipy/linalg/flapack.so (architecture i386):
/System/Library/Frameworks/Accelerate.framework/Versions/A/Accelerate (compatibility version 1.0.0, current version 4.0.0)
/usr/local/lib/libgcc_s.1.dylib (compatibility version 1.0.0, current version 1.0.0)
/usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 111.1.4)
/System/Library/Frameworks/vecLib.framework/Versions/A/vecLib (compatibility version 1.0.0, current version 242.0.0)
scipy/linalg/flapack.so (architecture ppc):
/System/Library/Frameworks/Accelerate.framework/Versions/A/Accelerate (compatibility version 1.0.0, current version 4.0.0)
/usr/local/lib/libgcc_s.1.dylib (compatibility version 1.0.0, current version 1.0.0)
/usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 111.1.4)
$ otool -L scipy/linalg/fblas.so
scipy/linalg/fblas.so (architecture i386):
/System/Library/Frameworks/Accelerate.framework/Versions/A/Accelerate (compatibility version 1.0.0, current version 4.0.0)
/usr/local/lib/libgcc_s.1.dylib (compatibility version 1.0.0, current version 1.0.0)
/usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 111.1.4)
/System/Library/Frameworks/vecLib.framework/Versions/A/vecLib (compatibility version 1.0.0, current version 242.0.0)
scipy/linalg/fblas.so (architecture ppc):
/System/Library/Frameworks/Accelerate.framework/Versions/A/Accelerate (compatibility version 1.0.0, current version 4.0.0)
/usr/local/lib/libgcc_s.1.dylib (compatibility version 1.0.0, current version 1.0.0)
/usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 111.1.4)
substitute ldd
in place of otool
on a gnu/Linux system and you should get the answers you need.
You can display BLAS, LAPACK, MKL linkage using show_config()
:
import numpy as np
np.show_config()
Which for me gives output:
mkl_info:
libraries = ['mkl_rt', 'pthread']
library_dirs = ['/my/environment/path/lib']
define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]
include_dirs = ['/my/environment/path/include']
blas_mkl_info:
libraries = ['mkl_rt', 'pthread']
library_dirs = ['/my/environment/path/lib']
define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]
include_dirs = ['/my/environment/path/include']
blas_opt_info:
libraries = ['mkl_rt', 'pthread']
library_dirs = ['/my/environment/path/lib']
define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]
include_dirs = ['/my/environment/path/include']
lapack_mkl_info:
libraries = ['mkl_rt', 'pthread']
library_dirs = ['/my/environment/path/lib']
define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]
include_dirs = ['/my/environment/path/include']
lapack_opt_info:
libraries = ['mkl_rt', 'pthread']
library_dirs = ['/my/environment/path/lib']
define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]
include_dirs = ['/my/environment/path/include']
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With