How to calculate modulus of 5^55 modulus 221 without much use of calculator?
I guess there are some simple principles in number theory in cryptography to calculate such things.
Now we do our usual modular multiplication: 11 * 4 * 9 * 9 (mod 13) = 44 * 81 (mod 13) = 5 * 3 (mod 13) = 2 (mod 13). In the applet below you can see the process of calculating modular powers for other numbers. To submit your input you need to click enter in the modulo field.
Okay, so you want to calculate a^b mod m
. First we'll take a naive approach and then see how we can refine it.
First, reduce a mod m
. That means, find a number a1
so that 0 <= a1 < m
and a = a1 mod m
. Then repeatedly in a loop multiply by a1
and reduce again mod m
. Thus, in pseudocode:
a1 = a reduced mod m p = 1 for(int i = 1; i <= b; i++) { p *= a1 p = p reduced mod m }
By doing this, we avoid numbers larger than m^2
. This is the key. The reason we avoid numbers larger than m^2
is because at every step 0 <= p < m
and 0 <= a1 < m
.
As an example, let's compute 5^55 mod 221
. First, 5
is already reduced mod 221
.
1 * 5 = 5 mod 221
5 * 5 = 25 mod 221
25 * 5 = 125 mod 221
125 * 5 = 183 mod 221
183 * 5 = 31 mod 221
31 * 5 = 155 mod 221
155 * 5 = 112 mod 221
112 * 5 = 118 mod 221
118 * 5 = 148 mod 221
148 * 5 = 77 mod 221
77 * 5 = 164 mod 221
164 * 5 = 157 mod 221
157 * 5 = 122 mod 221
122 * 5 = 168 mod 221
168 * 5 = 177 mod 221
177 * 5 = 1 mod 221
1 * 5 = 5 mod 221
5 * 5 = 25 mod 221
25 * 5 = 125 mod 221
125 * 5 = 183 mod 221
183 * 5 = 31 mod 221
31 * 5 = 155 mod 221
155 * 5 = 112 mod 221
112 * 5 = 118 mod 221
118 * 5 = 148 mod 221
148 * 5 = 77 mod 221
77 * 5 = 164 mod 221
164 * 5 = 157 mod 221
157 * 5 = 122 mod 221
122 * 5 = 168 mod 221
168 * 5 = 177 mod 221
177 * 5 = 1 mod 221
1 * 5 = 5 mod 221
5 * 5 = 25 mod 221
25 * 5 = 125 mod 221
125 * 5 = 183 mod 221
183 * 5 = 31 mod 221
31 * 5 = 155 mod 221
155 * 5 = 112 mod 221
112 * 5 = 118 mod 221
118 * 5 = 148 mod 221
148 * 5 = 77 mod 221
77 * 5 = 164 mod 221
164 * 5 = 157 mod 221
157 * 5 = 122 mod 221
122 * 5 = 168 mod 221
168 * 5 = 177 mod 221
177 * 5 = 1 mod 221
1 * 5 = 5 mod 221
5 * 5 = 25 mod 221
25 * 5 = 125 mod 221
125 * 5 = 183 mod 221
183 * 5 = 31 mod 221
31 * 5 = 155 mod 221
155 * 5 = 112 mod 221
Therefore, 5^55 = 112 mod 221
.
Now, we can improve this by using exponentiation by squaring; this is the famous trick wherein we reduce exponentiation to requiring only log b
multiplications instead of b
. Note that with the algorithm that I described above, the exponentiation by squaring improvement, you end up with the right-to-left binary method.
a1 = a reduced mod m p = 1 while (b > 0) { if (b is odd) { p *= a1 p = p reduced mod m } b /= 2 a1 = (a1 * a1) reduced mod m }
Thus, since 55 = 110111 in binary
1 * (5^1 mod 221) = 5 mod 221
5 * (5^2 mod 221) = 125 mod 221
125 * (5^4 mod 221) = 112 mod 221
112 * (5^16 mod 221) = 112 mod 221
112 * (5^32 mod 221) = 112 mod 221
Therefore the answer is 5^55 = 112 mod 221
. The reason this works is because
55 = 1 + 2 + 4 + 16 + 32
so that
5^55 = 5^(1 + 2 + 4 + 16 + 32) mod 221 = 5^1 * 5^2 * 5^4 * 5^16 * 5^32 mod 221 = 5 * 25 * 183 * 1 * 1 mod 221 = 22875 mod 221 = 112 mod 221
In the step where we calculate 5^1 mod 221
, 5^2 mod 221
, etc. we note that 5^(2^k)
= 5^(2^(k-1)) * 5^(2^(k-1))
because 2^k = 2^(k-1) + 2^(k-1)
so that we can first compute 5^1
and reduce mod 221
, then square this and reduce mod 221
to obtain 5^2 mod 221
, etc.
The above algorithm formalizes this idea.
To add to Jason's answer:
You can speed the process up (which might be helpful for very large exponents) using the binary expansion of the exponent. First calculate 5, 5^2, 5^4, 5^8 mod 221 - you do this by repeated squaring:
5^1 = 5(mod 221) 5^2 = 5^2 (mod 221) = 25(mod 221) 5^4 = (5^2)^2 = 25^2(mod 221) = 625 (mod 221) = 183(mod221) 5^8 = (5^4)^2 = 183^2(mod 221) = 33489 (mod 221) = 118(mod 221) 5^16 = (5^8)^2 = 118^2(mod 221) = 13924 (mod 221) = 1(mod 221) 5^32 = (5^16)^2 = 1^2(mod 221) = 1(mod 221)
Now we can write
55 = 1 + 2 + 4 + 16 + 32 so 5^55 = 5^1 * 5^2 * 5^4 * 5^16 * 5^32 = 5 * 25 * 625 * 1 * 1 (mod 221) = 125 * 625 (mod 221) = 125 * 183 (mod 183) - because 625 = 183 (mod 221) = 22875 ( mod 221) = 112 (mod 221)
You can see how for very large exponents this will be much faster (I believe it's log as opposed to linear in b, but not certain.)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With