This question has been asked in Microsoft interview. Very much curious to know why these people ask so strange questions on probability?
Given a rand(N), a random generator which generates random number from 0 to N-1.
int A[N]; // An array of size N
for(i = 0; i < N; i++)
{
int m = rand(N);
int n = rand(N);
swap(A[m],A[n]);
}
EDIT: Note that the seed is not fixed.
what is the probability that array A remains the same?
Assume that the array contains unique elements.
The probability of can be found out using the below formula: Probability = total number of K present / size of array. First, count the number of K's and then the probability will be the number of K's divided by N i.e. count / N.
int monteCarloProbability = (howManyTimesInvoked * 100) / numberOfSamples; Mind that, the computed probability is approximated. The higher the number of samples, the better the approximation will be.
A permutation is a rearrangement of members of a sequence into a new sequence. For example, there are 24 permutations of [a, b, c, d]. Some of them are [b, a, d, c], [d, a, b, c] and [a, d, b, c].
Well I had a little fun with this one. The first thing I thought of when I first read the problem was group theory (the symmetric group Sn, in particular). The for loop simply builds a permutation σ in Sn by composing transpositions (i.e. swaps) on each iteration. My math is not all that spectacular and I'm a little rusty, so if my notation is off bear with me.
Let A
be the event that our array is unchanged after permutation. We are ultimately asked to find the probability of event A
, Pr(A)
.
My solution attempts to follow the following procedure:
Notice that each iteration of the for loop creates a swap (or transposition) that results one of two things (but never both):
We label the second case. Let's define an identity transposition as follows:
An identity transposition occurs when a number is swapped with itself. That is, when n == m in the above for loop.
For any given run of the listed code, we compose N
transpositions. There can be 0, 1, 2, ... , N
of the identity transpositions appearing in this "chain".
For example, consider an N = 3
case:
Given our input [0, 1, 2].
Swap (0 1) and get [1, 0, 2].
Swap (1 1) and get [1, 0, 2]. ** Here is an identity **
Swap (2 2) and get [1, 0, 2]. ** And another **
Note that there is an odd number of non-identity transpositions (1) and the array is changed.
Let K_i
be the event that i
identity transpositions appear in a given permutation. Note this forms an exhaustive partition of all possible outcomes:
0
and N
identity transpositions. Thus we can apply the Law of Total Probability:
Now we can finally take advantage of the the partition. Note that when the number of non-identity transpositions is odd, there is no way the array can go unchanged*. Thus:
*From group theory, a permutation is even or odd but never both. Therefore an odd permutation cannot be the identity permutation (since the identity permutation is even).
So we now must determine two probabilities for N-i
even:
The first term, , represents the probability of obtaining a permutation with i
identity transpositions. This turns out to be binomial since for each iteration of the for loop:
1/N
.Thus for N
trials, the probability of obtaining i
identity transpositions is:
So if you've made it this far, we have reduced the problem to finding for N - i
even. This represents the probability of obtaining an identity permutation given i
of the transpositions are identities. I use a naive counting approach to determine the number of ways of achieving the identity permutation over the number of possible permutations.
First consider the permutations (n, m)
and (m, n)
equivalent. Then, let M
be the number of non-identity permutations possible. We will use this quantity frequently.
The goal here is to determine the number of ways a collections of transpositions can be combined to form the identity permutation. I will try to construct the general solution along side an example of N = 4
.
Let's consider the N = 4
case with all identity transpositions (i.e. i = N = 4
). Let X
represent an identity transposition. For each X
, there are N
possibilities (they are: n = m = 0, 1, 2, ... , N - 1
). Thus there are N^i = 4^4
possibilities for achieving the identity permutation. For completeness, we add the binomial coefficient, C(N, i)
, to consider ordering of the identity transpositions (here it just equals 1). I've tried to depict this below with the physical layout of elements above and the number of possibilities below:
I = _X_ _X_ _X_ _X_
N * N * N * N * C(4, 4) => N^N * C(N, N) possibilities
Now without explicitly substituting N = 4
and i = 4
, we can look at the general case. Combining the above with the denominator found previously, we find:
This is intuitive. In fact, any other value other than 1
should probably alarm you. Think about it: we are given the situation in which all N
transpositions are said to be identities. What's the probably that the array is unchanged in this situation? Clearly, 1
.
Now, again for N = 4
, let's consider 2 identity transpositions (i.e. i = N - 2 = 2
). As a convention, we will place the two identities at the end (and account for ordering later). We know now that we need to pick two transpositions which, when composed, will become the identity permutation. Let's place any element in the first location, call it t1
. As stated above, there are M
possibilities supposing t1
is not an identity (it can't be as we have already placed two).
I = _t1_ ___ _X_ _X_
M * ? * N * N
The only element left that could possibly go in the second spot is the inverse of t1
, which is in fact t1
(and this is the only one by uniqueness of inverse). We again include the binomial coefficient: in this case we have 4 open locations and we are looking to place 2 identity permutations. How many ways can we do that? 4 choose 2.
I = _t1_ _t1_ _X_ _X_
M * 1 * N * N * C(4, 2) => C(N, N-2) * M * N^(N-2) possibilities
Again looking at the general case, this all corresponds to:
Finally we do the N = 4
case with no identity transpositions (i.e. i = N - 4 = 0
). Since there are a lot of possibilities, it starts to get tricky and we must be careful not to double count. We start similarly by placing a single element in the first spot and working out possible combinations. Take the easiest first: the same transposition 4 times.
I = _t1_ _t1_ _t1_ _t1_
M * 1 * 1 * 1 => M possibilities
Let's now consider two unique elements t1
and t2
. There are M
possibilities for t1
and only M-1
possibilities for t2
(since t2
cannot be equal to t1
). If we exhaust all arrangements, we are left with the following patterns:
I = _t1_ _t1_ _t2_ _t2_
M * 1 * M-1 * 1 => M * (M - 1) possibilities (1)st
= _t1_ _t2_ _t1_ _t2_
M * M-1 * 1 * 1 => M * (M - 1) possibilities (2)nd
= _t1_ _t2_ _t2_ _t1_
M * M-1 * 1 * 1 => M * (M - 1) possibilities (3)rd
Now let's consider three unique elements, t1
, t2
, t3
. Let's place t1
first and then t2
. As usual, we have:
I = _t1_ _t2_ ___ ___
M * ? * ? * ?
We can't yet say how many possible t2
s there can be yet, and we will see why in a minute.
We now place t1
in the third spot. Notice, t1
must go there since if were to go in the last spot, we would just be recreating the (3)rd
arrangement above. Double counting is bad! This leaves the third unique element t3
to the final position.
I = _t1_ _t2_ _t1_ _t3_
M * ? * 1 * ?
So why did we have to take a minute to consider the number of t2
s more closely? The transpositions t1
and t2
cannot be disjoint permutations (i.e. they must share one (and only one since they also cannot be equal) of their n
or m
). The reason for this is because if they were disjoint, we could swap the order of permutations. This means we would be double counting the (1)st
arrangement.
Say t1 = (n, m)
. t2
must be of the form (n, x)
or (y, m)
for some x
and y
in order to be non-disjoint. Note that x
may not be n
or m
and y
many not be n
or m
. Thus, the number of possible permutations that t2
could be is actually 2 * (N - 2)
.
So, coming back to our layout:
I = _t1_ _t2_ _t1_ _t3_
M * 2(N-2) * 1 * ?
Now t3
must be the inverse of the composition of t1 t2 t1
. Let's do it out manually:
(n, m)(n, x)(n, m) = (m, x)
Thus t3
must be (m, x)
. Note this is not disjoint to t1
and not equal to either t1
or t2
so there is no double counting for this case.
I = _t1_ _t2_ _t1_ _t3_
M * 2(N-2) * 1 * 1 => M * 2(N - 2) possibilities
Finally, putting all of these together:
So that's it. Work backwards, substituting what we found into the original summation given in step 2. I computed the answer to the N = 4
case below. It matches the empirical number found in another answer very closely!
N = 4 M = 6 _________ _____________ _________ | Pr(K_i) | Pr(A | K_i) | Product | _________|_________|_____________|_________| | | | | | | i = 0 | 0.316 | 120 / 1296 | 0.029 | |_________|_________|_____________|_________| | | | | | | i = 2 | 0.211 | 6 / 36 | 0.035 | |_________|_________|_____________|_________| | | | | | | i = 4 | 0.004 | 1 / 1 | 0.004 | |_________|_________|_____________|_________| | | | | Sum: | 0.068 | |_____________|_________|
It would be cool if there was a result in group theory to apply here-- and maybe there is! It would certainly help make all this tedious counting go away completely (and shorten the problem to something much more elegant). I stopped working at N = 4
. For N > 5
, what is given only gives an approximation (how good, I'm not sure). It is pretty clear why that is if you think about it: for example, given N = 8
transpositions, there are clearly ways of creating the identity with four unique elements which are not accounted for above. The number of ways becomes seemingly more difficult to count as the permutation gets longer (as far as I can tell...).
Anyway, I definitely couldn't do something like this within the scope of an interview. I would get as far as the denominator step if I was lucky. Beyond that, it seems pretty nasty.
Very much curious to know why these people ask so strange questions on probability?
Questions like this are asked because they allow the interviewer to gain insight into the interviewee's
... and so on. The key to having a question that exposes these attributes of the interviewee is to have a piece of code that is deceptively simple. This shakes out the imposters the non-coder is stuck; the arrogant jump to the wrong conclusion; the lazy or sub-par computer scientist finds a simple solution and stops looking. Often, as they say, it's not whether you get the right answer but whether you impress with your thought process.
I'll attempt to answer the question, too. In an interview I'd explain myself rather than provide a one-line written answer - this is because even if my 'answer' is wrong, I am able to demonstrate logical thinking.
A will remain the same - i.e. elements in the same positions - when
m == n
in every iteration (so that every element only swaps with itself); orThe first case is the 'simple' case that duedl0r gives, the case that the array isn't altered. This might be the answer, because
what is the probability that array A remains the same?
if the array changes at i = 1
and then reverts back at i = 2
, it's in the original state but it didn't 'remain the same' - it was changed, and then changed back. That might be a smartass technicality.
Then considering the chance of elements being swapped and swapped back - I think that calculation is above my head in an interview. The obvious consideration is that that does not need to be a change - change back swap, there could just as easily be a swap between three elements, swapping 1 and 2, then 2 and 3, 1 and 3 and finally 2 and 3. And continuing, there could be swaps between 4, 5 or more items that are 'circular' like this.
In fact, rather than considering the cases where the array is unchanged, it may be simpler to consider the cases where it is changed. Consider whether this problem can be mapped onto a known structure like Pascal's triangle.
This is a hard problem. I agree that it's too hard to solve in an interview, but that doesn't mean it is too hard to ask in an interview. The poor candidate won't have an answer, the average candidate will guess the obvious answer, and the good candidate will explain why the problem is too hard to answer.
I consider this an 'open-ended' question that gives the interviewer insight into the candidate. For this reason, even though it's too hard to solve during an interview, it is a good question to ask during an interview. There's more to asking a question than just checking whether the answer is right or wrong.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With