How can I produce all of the combinations of the values in N number of JavaScript arrays of variable lengths?
Let's say I have N number of JavaScript arrays, e.g.
var first = ['a', 'b', 'c', 'd'];
var second = ['e'];
var third =  ['f', 'g', 'h', 'i', 'j'];
(Three arrays in this example, but its N number of arrays for the problem.)
And I want to output all the combinations of their values, to produce
aef
aeg
aeh
aei
aej
bef
beg
....
dej
EDIT: Here's the version I got working, using ffriend's accepted answer as the basis.
var allArrays = [['a', 'b'], ['c', 'z'], ['d', 'e', 'f']];
 function allPossibleCases(arr) {
  if (arr.length === 0) {
    return [];
  } 
  else if (arr.length ===1){
    return arr[0];
  }
  else {
    var result = [];
    var allCasesOfRest = allPossibleCases(arr.slice(1));  // recur with the rest of array
    for (var c in allCasesOfRest) {
      for (var i = 0; i < arr[0].length; i++) {
        result.push(arr[0][i] + allCasesOfRest[c]);
      }
    }
    return result;
  }
}
var results = allPossibleCases(allArrays);
 //outputs ["acd", "bcd", "azd", "bzd", "ace", "bce", "aze", "bze", "acf", "bcf", "azf", "bzf"]
                This is not permutations, see permutations definitions from Wikipedia.
But you can achieve this with recursion:
var allArrays = [
  ['a', 'b'],
  ['c'],
  ['d', 'e', 'f']
]
function allPossibleCases(arr) {
  if (arr.length == 1) {
    return arr[0];
  } else {
    var result = [];
    var allCasesOfRest = allPossibleCases(arr.slice(1)); // recur with the rest of array
    for (var i = 0; i < allCasesOfRest.length; i++) {
      for (var j = 0; j < arr[0].length; j++) {
        result.push(arr[0][j] + allCasesOfRest[i]);
      }
    }
    return result;
  }
}
console.log(allPossibleCases(allArrays))
You can also make it with loops, but it will be a bit tricky and will require implementing your own analogue of stack.
I suggest a simple recursive generator function as follows:
// Generate cartesian product of given iterables:
function* cartesian(head, ...tail) {
  let remainder = tail.length ? cartesian(...tail) : [[]];
  for (let r of remainder) for (let h of head) yield [h, ...r];
}
// Example:
const first  = ['a', 'b', 'c', 'd'];
const second = ['e'];
const third  = ['f', 'g', 'h', 'i', 'j'];
console.log(...cartesian(first, second, third));
You don't need recursion, or heavily nested loops, or even to generate/store the whole array of permutations in memory.
Since the number of permutations is the product of the lengths of each of the arrays (call this numPerms), you can create a function getPermutation(n) that returns a unique permutation between index 0 and numPerms - 1 by calculating the indices it needs to retrieve its characters from, based on n.
How is this done? If you think of creating permutations on arrays each containing: [0, 1, 2, ... 9] it's very simple... the 245th permutation (n=245) is "245", rather intuitively, or:
arrayHundreds[Math.floor(n / 100) % 10]
+ arrayTens[Math.floor(n / 10) % 10]
+ arrayOnes[Math.floor(n / 1) % 10]
The complication in your problem is that array sizes differ. We can work around this by replacing the n/100, n/10, etc... with other divisors. We can easily pre-calculate an array of divisors for this purpose. In the above example, the divisor of 100 was equal to arrayTens.length * arrayOnes.length. Therefore we can calculate the divisor for a given array to be the product of the lengths of the remaining arrays. The very last array always has a divisor of 1. Also, instead of modding by 10, we mod by the length of the current array.
Example code is below:
var allArrays = [first, second, third, ...];
// Pre-calculate divisors
var divisors = [];
for (var i = allArrays.length - 1; i >= 0; i--) {
   divisors[i] = divisors[i + 1] ? divisors[i + 1] * allArrays[i + 1].length : 1;
}
function getPermutation(n) {
   var result = "", curArray;
   for (var i = 0; i < allArrays.length; i++) {
      curArray = allArrays[i];
      result += curArray[Math.floor(n / divisors[i]) % curArray.length];
   }
   return result;
}
                        If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With