The same you would normally check for an attribute on a class. Here's some sample code. typeof(ScheduleController) . IsDefined(typeof(SubControllerActionToViewDataAttribute), false);
2. Defining the Attribute class: It is defined in the same way as a normal class is, the name of the class conventionally ends in 'Attribute'. This class must inherit directly or indirectly from System. Attribute class.
Advertisements. An attribute is a declarative tag that is used to convey information to runtime about the behaviors of various elements like classes, methods, structures, enumerators, assemblies etc. in your program. You can add declarative information to a program by using an attribute.
Yes, absolutely. Using Reflection:
static IEnumerable<Type> GetTypesWithHelpAttribute(Assembly assembly) {
foreach(Type type in assembly.GetTypes()) {
if (type.GetCustomAttributes(typeof(HelpAttribute), true).Length > 0) {
yield return type;
}
}
}
Well, you would have to enumerate through all the classes in all the assemblies that are loaded into the current app domain. To do that, you would call the GetAssemblies
method on the AppDomain
instance for the current app domain.
From there, you would call GetExportedTypes
(if you only want public types) or GetTypes
on each Assembly
to get the types that are contained in the assembly.
Then, you would call the GetCustomAttributes
extension method on each Type
instance, passing the type of the attribute you wish to find.
You can use LINQ to simplify this for you:
var typesWithMyAttribute =
from a in AppDomain.CurrentDomain.GetAssemblies()
from t in a.GetTypes()
let attributes = t.GetCustomAttributes(typeof(HelpAttribute), true)
where attributes != null && attributes.Length > 0
select new { Type = t, Attributes = attributes.Cast<HelpAttribute>() };
The above query will get you each type with your attribute applied to it, along with the instance of the attribute(s) assigned to it.
Note that if you have a large number of assemblies loaded into your application domain, that operation could be expensive. You can use Parallel LINQ to reduce the time of the operation (at the cost of CPU cycles), like so:
var typesWithMyAttribute =
// Note the AsParallel here, this will parallelize everything after.
from a in AppDomain.CurrentDomain.GetAssemblies().AsParallel()
from t in a.GetTypes()
let attributes = t.GetCustomAttributes(typeof(HelpAttribute), true)
where attributes != null && attributes.Length > 0
select new { Type = t, Attributes = attributes.Cast<HelpAttribute>() };
Filtering it on a specific Assembly
is simple:
Assembly assembly = ...;
var typesWithMyAttribute =
from t in assembly.GetTypes()
let attributes = t.GetCustomAttributes(typeof(HelpAttribute), true)
where attributes != null && attributes.Length > 0
select new { Type = t, Attributes = attributes.Cast<HelpAttribute>() };
And if the assembly has a large number of types in it, then you can use Parallel LINQ again:
Assembly assembly = ...;
var typesWithMyAttribute =
// Partition on the type list initially.
from t in assembly.GetTypes().AsParallel()
let attributes = t.GetCustomAttributes(typeof(HelpAttribute), true)
where attributes != null && attributes.Length > 0
select new { Type = t, Attributes = attributes.Cast<HelpAttribute>() };
Other answers reference GetCustomAttributes. Adding this one as an example of using IsDefined
Assembly assembly = ...
var typesWithHelpAttribute =
from type in assembly.GetTypes()
where type.IsDefined(typeof(HelpAttribute), false)
select type;
As already stated, reflection is the way to go. If you are going to call this frequently, I highly suggest caching the results, as reflection, especially enumerating through every class, can be quite slow.
This is a snippet of my code that runs through all the types in all loaded assemblies:
// this is making the assumption that all assemblies we need are already loaded.
foreach (Assembly assembly in AppDomain.CurrentDomain.GetAssemblies())
{
foreach (Type type in assembly.GetTypes())
{
var attribs = type.GetCustomAttributes(typeof(MyCustomAttribute), false);
if (attribs != null && attribs.Length > 0)
{
// add to a cache.
}
}
}
This is a performance enhancement on top of the accepted solution. Iterating though all classes can be slow because there are so many. Sometimes you can filter out an entire assembly without looking at any of its types.
For example if you are looking for an attribute that you declared yourself, you don't expect any of the system DLLs to contain any types with that attribute. The Assembly.GlobalAssemblyCache property is a quick way to check for system DLLs. When I tried this on a real program I found I could skip 30,101 types and I only have to check 1,983 types.
Another way to filter is to use Assembly.ReferencedAssemblies. Presumably if you want classes with a specific attribute, and that attribute is defined in a specific assembly, then you only care about that assembly and other assemblies that reference it. In my tests this helped slightly more than checking the GlobalAssemblyCache property.
I combined both of these and got it even faster. The code below includes both filters.
string definedIn = typeof(XmlDecoderAttribute).Assembly.GetName().Name;
foreach (Assembly assembly in AppDomain.CurrentDomain.GetAssemblies())
// Note that we have to call GetName().Name. Just GetName() will not work. The following
// if statement never ran when I tried to compare the results of GetName().
if ((!assembly.GlobalAssemblyCache) && ((assembly.GetName().Name == definedIn) || assembly.GetReferencedAssemblies().Any(a => a.Name == definedIn)))
foreach (Type type in assembly.GetTypes())
if (type.GetCustomAttributes(typeof(XmlDecoderAttribute), true).Length > 0)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With